The icpTOF Delivers All-Element, High Resolution Detection for Nanoparticles and Laser Ablation Imaging

An inductively coupled plasma mass spectrometer (ICP-MS) that simultaneously measures all isotopes at unprecedented speed

Ask a Question / Request a Demo

Advantages of the icpTOF

The icpTOF is an inductively coupled plasma mass spectrometer (ICP-MS) that couples the source and interface hardware of a Thermo Scientific iCAP RQ to a TOFWERK TOF mass analyzer.  The iCAP RQ hardware provides versatile sample introduction, robust ICP, simple access to cones and lenses and the Q-cell technology. The TOF adds simultaneous all-element detection, linear response and mass resolving power >6000, while maintaining QMS-equivalent sensitivity.   With high-speed mass spectral acquisition and simultaneous analysis of all isotopes, the icpTOF is the ideal ICP-MS detector for multi-element single particle analysis or fast laser ablation imaging.

  • All the elements. All the time. The icpTOF always records complete mass spectra, so you never miss an analyte or interference signal.
  • High mass resolution. The icpTOF 2R has a mass resolving power of 6000 allowing you to separate interfering ions.
  • Precise isotope ratios. The icpTOF simultaneously measures all isotopes, thus eliminating the susceptibility of your measurements to source and sample fluctuations.  Precision approaches statistical limits.
  • High speed detection. The icpTOF records a complete mass spectrum every 30-50 µs making it the optimum detector for fast transient signals such as individual nanoparticles, fluid inclusions and laser ablation pixels.

Webinar: Fundamentals and Applications of the icpTOF

Webinar: Fundamentals and Applications of the icpTOF

Download icpTOF Single Particle Brochure Download icpTOF Laser Ablation Brochure


icpTOF R and icpTOF 2R Models

The icpTOF R and the icpTOF 2R couple a TOFWERK time-of-flight (TOF) mass analyzer to the source and interface hardware of a Thermo iCAP RQ.   The icpTOF 2R key design modification is a lengthening of the TOF ion drift chamber, which doubles the mass resolving power from >3000 (icpTOF R) to >6000 (icpTOF 2R).  The 2R is the choice for applications that demand separation of difficult isobaric interferences.


Mass Resolving Power

(ΔM/M at FWHM)


(cps/ppb for 238U)

All Element Analysis


icpTOF R300050000Yes
icpTOF 2R600030000Yes
Download Complete icpTOF Specifications Table


Increased Flight Path for Improved Resolving Power

  • Both icpTOF models include the iCAP RQ source and interface (blue) with Q-cell technology for suppression of matrix ions
  • The TOF ion drift chamber (yellow) of the icpTOF 2R is two times longer than that of the icpTOF R, leading to a doubling of mass resolving power
icpTOF R and icpTOF 2R

 Notch Filter Technology to Attenuate Plasma and Sample Matrix Ions

Signal of a laser ablation experiment on Zircon 'Plesovice' -naturally high in Hafnium content. Signal attenuation of notch filter set around mass 28 -Silicon, 40 -Ar-Plasma, 90 -Zircon and 179 -Hafnium to keep plasma and matrix ion signals <10 mV.


icpTOF Publications


  1. Loosli, F.; Wang, J.; Rothenberg, S.;  Bizimis, M.; Winkler, C.; Borovinskaya, O.; Flamigni, L.; Baalousha, M. Sewage spills are a major source of titanium dioxide engineered (nano)-particles into the environment. Environ. Sci.: Nano 2019. DOI: 10.1039/c8en01376d
  2. Bauer, O.; Hachmöller, O.; Borovinskaya, O.; Sperling, M.; Schurek, H.;  Ciarimboli, G.; Karst, U. LA-ICP-ToFMS for rapid, all-elemental and quantitative bioimaging, isotopic analysis and the investigation of plasma processes”, Journal of Analytical Atomic Spectrometry 2019. DOI: 10.1039/C8JA00288F
  3. Hendriks, L.; Ramkorun-Schmidt, B.; Gundlach-Graham, A.; Koch, J.; Grass, R. N.; Jakubowski, N.; Gunther, D. Single-Particle ICP-MS with Online Microdroplet Calibration: Toward Matrix Independent Nanoparticle Sizing. Journal of Analytical Atomic Spectrometry 2019. In Focus | DOI: 10.1039/C8JA00397A
  4. Burgay, F.; Erhardt, T.; Lunga, D. D.; Jensen, C. M.; Spolaor, A.; Vallelonga, P.; Fischer, H.; Barbante, C.;  Fe2+ in ice cores as a new potential proxy to detect past volcanic eruptions. Science of The Total Environment 2019. DOI: 10.1016/j.scitotenv.2018.11.075
  5. Burger, M.; Hendriks, L.; Kaeslin, J.; Gundlach-Graham, A.; Hattendorf, B.; Günther, D. Characterization of inductively coupled plasma time-of-flight mass spectrometry in combination with collision/reaction cell technology–insights from highly time-resolved measurements. Journal of Analytical Atomic Spectrometry 2019. In FocusDOI: 10.1039/C8JA00275D


  1. Hegetschweiler, A.; Borovinskaya, O.; Staudt, T.; Kraus, T. Single particle mass spectrometry of titanium and niobium carbonitride precipitates in steels. Analytical Chemistry 2018. In Focus | DOI:10.1021/acs.analchem.8b04012
  2. Gundlach-Graham, A.; Hendriks, L.; Mehrabi, K.; Günther, D.  Monte Carlo Simulation of Low-Count Signals in Time-of-Flight Mass Spectrometry and its Application to Single-Particle Detection. Analytical Chemistry 2018. DOI: 10.1021/acs.analchem.8b01551
  3. Ronzani, A.; Pointurier, F.; Rittner, M.; Borovinskaya, O.; Tanner, M.; Hubert, A.; Humbert, A.C.; Aupiais, J.; Dacheux, N. Capabilities of Laser Ablation – ICP-TOF-MS Coupling for Isotopic Analysis of Individual Uranium Micrometric Particles. Journal of Analytical Atomic Spectrometry 2018. In FocusDOI: 10.1039/C8JA00241J 
  4. Käser, D.; Hendriks, L.; Koch, J.; Günther, D. Depth Profile Analyses with Sub 100-nm Depth Resolution of a Metal Thin Film by Femtosecond – Laser Ablation – Inductively Coupled Plasma – Time-of-Flight Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2018. In FocusDOI:10.1016/j.sab.2018.08.002
  5. Gundlach-Graham, A.; Garofalo, P.S.; Schwarz, G.; Redi, D.; Günther, D. High‐Resolution, Quantitative Element Imaging of an Upper Crust, Low‐Angle Cataclasite (Zuccale Fault, Northern Apennines) by Laser Ablation ICP Time‐of‐Flight Mass Spectrometry. Geostandards and Geoanalytical Research 2018. In FocusDOI: 10.1111/ggr.12233
  6. Ohata, M.; Hagino, H. Examination on simultaneous multi-element isotope ratio measurement by inductively coupled plasma time of flight mass spectrometry. International Journal of Mass Spectrometry 2018In FocusDOI:10.1016/j.ijms.2018.03.003
  7. Gundlach-Graham, A. An Elemental Regeneration. The Analytical Scientist 2018. URL Link
  8. Naasz, S.; et al. Multi-element analysis of single nanoparticles by ICP-MS using quadrupole and time-of-flight technologies.  Journal of Analytical Atomic Spectrometry 2018. In FocusDOI:10.1039/C7JA00399D
  9. Gondikas, A.; et al. Where is the nano? Analytical approaches for the detection and quantification of TiO 2 engineered nanoparticles in surface waters. Environmental Science: Nano 2018.  In Focus | DOI:10.1039/c7en00952f
  10. Hendriks, L.; Gundlach-Graham, A.; Günther, D. Analysis of Inorganic Nanoparticles by Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. CHIMIA International Journal for Chemistry 2018. In FocusDOI: 10.2533/chimia.2018.221


  1. Hagino, H.; Tonegawa, Y.; Tanner, M.; Borovinskaya, O.; Hikita, T.; Shimono, A.; Application of ICP-TOFMS for Real-Time Measurement of Trace Elements in Automotive Exhaust Particulate Matters from Engine Oil Additives. Transactions of Society of Automotive Engineers of Japan 2017. In FocusDOI: 10.11351/jsaeronbun.48.1341 
  2. Hendriks, L.; et al. Characterization of a new ICP-TOFMS instrument with continuous and discrete introduction of solutions, Journal of Analytical Atomic Spectrometry 2017.  In FocusDOI: 10.1039/C6JA00400H
  3. Burger, M.; et al. Capabilities of laser ablation inductively coupled plasma time-of-flight mass spectrometry. Journal of Analytical Atomic Spectrometry 2017. DOI: 10.1039/C7JA00236J
  4. Van Malderen, S.; et al. Three-Dimensional reconstruction of the Tissue-Specific Multielemental Distribution within Ceriodaphnia dubia via Multimodal Registration Using Laser Ablation ICP-Mass Spectrometry and X-ray Spectroscopic Techniques. Analytical Chemistry 2017. DOI: 10.1021/acs.analchem.7b00111
  5. Praetorius, A.; et al. Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environmental Science: Nano 2017.  In Focus |DOI: 10.1039/C6EN00455E
  6. Bussweiler, Y.; Borovinskaya, O.; Tanner, M. Laser Ablation and inductively coupled plasma-time-of-flight mass spectrometry-A powerful combination for high-speed multielemental imaging on the micrometer scale. Spectroscopy 2017. In Focus | Link


  1. Wang, H.; et al. Simultaneous High Sensitivity Trace-Element and Isotopic Analysis of Gemstones Using Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. The Journal of Gemmology 2016.
  2. Wiedenbeck, M. Time-of-flight Mass Spectrometry: A New Tool for Laser Ablation Analyses. Elements Magazine 2016. In Focus | Link
  3. Gundlach-Graham, A. Toward faster and higher resolution LA–ICPMS imaging: on the co-evolution of LA cell design and ICPMS instrumentation.  Analytical and Bioanalytical Chemistry 2016.  In FocusDOI: 10.1007/s00216-015-9251-8


  1. Harlaux, M.; et al. Capabilities of sequential and quasi-simultaneous LA-ICPMS for the multi-element analysis of small quantity of liquids (pl to nl): insights from fluid inclusion analysis.  Journal of Analytical Atomic Spectrometry 2015.  In FocusDOI: 10.1039/C5JA00111K
  2. Gundlach-Graham, A.; et al. High-speed, high-resolution, multi-elemental LA-ICP-TOFMS imaging: Part I instrumentation and two-dimensional imaging of geological samples.  Analytical Chemistry 2015. In FocusDOI:10.1021/acs.analchem.5b01196
  3. Burger, M.; et al. High-speed, high-resolution, multi-elemental LA-ICP-TOFMS imaging: Part II. Critical evaluation of quantitative three-dimensional imaging of major, minor and trace elements in geological samples.  Analytical Chemistry 2015In FocusDOI: 10.1021/acs.analchem.5b01977


  1. Borovinskaya, O.; et al. Simultaneous Mass Quantification of Nanoparticles of Different Composition in a Mixture by Microdroplet Generator-ICPTOFMS.  Analytical Chemistry 2014.  In FocusDOI: 10.1021/ac501150c
  2. Borovinskaya, O.; et al. Diffusion- and velocity-driven spatial separation of analytes from single droplets entering an ICP off-axis.  J. Anal. At. Spectrom. 2014. DOI: 10.1039/c3ja50307k


  1. Neubauer, U. Wie Forscher Nanopartikel in der Umwelt nachweisen. NZZ, 2013
  2. Borovinskaya, O.; et al. A prototype of a new inductively coupled plasma timeof-flight mass spectrometer providing temporally resolved, multi-element detection of short signals generated by single particles and droplets. J. Anal. At. Spectrom 2013. DOI: 10.1039/C2JA30227F


  1. Tanner, M.; Günther, D. A new ICP–TOFMS. Measurement and readout of mass spectra with 30 µs time resolution, applied to in-torch LA–ICP–MS.  Anal Bioanal Chem 2008. DOI: 10.1007/s00216-008-1869-3

Application Notes

Conference Presentations

Customer Research

TOFWERK Publications


White Papers

Background Knowledge About icpTOF