An inductively coupled plasma mass spectrometer (ICP-MS) that simultaneously measures all isotopes at unprecedented speed

The icpTOF delivers all-element, high resolution detection for nanoparticles and laser ablation imaging
Overview
Specifications
Publications
Resources
Overview
Advantages of the icpTOF
The icpTOF is an inductively coupled plasma mass spectrometer (ICP-MS) that couples the source and interface hardware of a Thermo Scientific iCAP RQ to a TOFWERK TOF mass analyzer. The iCAP RQ hardware provides versatile sample introduction, robust ICP, simple access to cones and lenses and the Q-cell technology. The TOF adds simultaneous all-element detection, linear response and mass resolving power >6000, while maintaining QMS-equivalent sensitivity. With high-speed mass spectral acquisition and simultaneous analysis of all isotopes, the icpTOF is the ideal ICP-MS detector for multi-element single particle analysis or fast laser ablation imaging.
- All the elements. All the time. The icpTOF always records complete mass spectra, so you never miss an analyte or interference signal.
- High mass resolution. The icpTOF 2R has a mass resolving power of 6000 allowing you to separate interfering ions.
- Precise isotope ratios. The icpTOF simultaneously measures all isotopes, thus eliminating the susceptibility of your measurements to source and sample fluctuations. Precision approaches statistical limits.
- High speed detection. The icpTOF records a complete mass spectrum every 12-50 µs making it the optimum detector for fast transient signals such as individual nanoparticles, fluid inclusions and laser ablation pixels.
- Maximum sensitivity. The icpTOF S2 has maximum sensitivity to increase image resolution and detect smaller particles with high SNR.

Play Video
Webinar: Selecting the Right icpTOF for Your Research
TALK TO OUR TEAM icp.info@tofwerk.com
Specifications
icpTOF R, icpTOF 2R, and icpTOF S2 Models
The icpTOF R, icpTOF 2R, and icpTOF S2 couple TOFWERK time-of-flight (TOF) mass analyzers to the source and interface hardware of a Thermo iCAP RQ. The optimized performance points enable diverse applications. The high resolution 2R is the choice for applications that demand separation of difficult isobaric interferences. The maximum sensitivity of the S2 increases spatial resolution for bioimaging and allows detection of smaller particles with high SNR.
Mass Resolving Power (ΔM/M at FWHM) |
Sensitivity (cps/ppb for 238U) |
All Element Analysis |
|
---|---|---|---|
icpTOF R | 3000 | 50000 | Yes |
icpTOF 2R | 6000 | 30000 | Yes |
icpTOF S2 | 900 | 300000 | Yes |
icpTOF Hardware Design
- All icpTOF models include the iCAP RQ source and interface (blue) with Q-cell technology for suppression of matrix ions
- The TOF ion drift chamber (yellow) of the icpTOF 2R is two times longer than that of the icpTOF R, leading to a doubling of mass resolving power
- The compact icpTOF S2 acquires complete mass spectra at the highest speed, leading to maximum time resolution and sensitivity.

Notch Filter Technology to Attenuate Plasma and Sample Matrix Ions

Publications
icpTOF Publications
2023
- Alam et al. Identification and quantification of Cr, Cu, and As incidental nanomaterials derived from CCA-treated wood in wildland-urban interface fire ashes. Journal of Hazardous Materials, 2023. DOI: 10.1016/j.jhazmat.2022.130608
- Nabi, M.; Wang, J.; Erfani, M.; Goharian E.; and Baalousha, M. Urban runoff drives titanium dioxide engineered particle concentrations in urban watersheds: field measurements. Environmental Science Nano, 2023. DOI: 10.1039/d2en00826b
- Babu, et al. Oral Anticancer Heterobimetallic PtIV-AuI Complexes Show High In Vivo Activity and Low Toxicity, Angewandte Chemie, 2023. DOI: 10.1002/ange.202217233
- Maeda, et al. Quantitative elemental mapping of chondritic meteorites using laser ablation-inductively coupled plasma-time of flight-mass spectrometry (LA-ICP-TOF-MS). J. Anal. At. Spectrom., 2023. DOI: 10.1039/D2JA00317A
- Harycki, S. and Gundlach-Graham, A. Characterization of a High-Sensitivity ICP-TOFMS Instrument for Microdroplet, Nanoparticle, and Microplastic Analyses. J. Anal. At. Spectrom., 2023. DOI: 10.1039/D2JA00295G
2022
- Bohleber et al. Geochemical Characterization of Insoluble Particle Clusters in Ice Cores Using Twodimensional Impurity Imaging. Geochemistry, Geophysics, Geosystems, 2022. DOI: 10.1029/2022GC010595
- Chang, et al. ICP-MS-Based Methodology In Metallomics: Towards Single Particle Analysis, Single Cell Analysis, and Spatial Metallomics. Atomic Spectroscopy, 2022. DOI: 10.46770/AS.2022.108
- Bland et al. Single-Particle Metal Fingerprint Analysis and Machine Learning Pipeline for Source Apportionment of Metal-Containing Fine Particles in Air, Environ. Sci. Technol. Lett., 2022. DOI: 10.1021/acs.estlett.2c00835
- Szakas, S.; Menking-Hoggatt, K.; Trejos, T.; Gundlach-Graham A. Elemental Characterization of Leaded and Lead-Free Inorganic Primer Gunshot Residue Standards Using Single Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Applied Spectroscopy, 2022.
DOI: 10.1177/00037028221142624 - Chronakis, M.; von der Au, M.; Meermann, B. Single Cell-Asymmetrical Flow Field-Flow Fractionation/ICP-Time of Flight-Mass Spectrometry (sc-AF4/ICP-ToF-MS): An efficient alternative for the cleaning and multielemental analysis of individual cells. J.Anal.At.Spectrom, 2022. DOI:10.1039/D2JA00264G
- Olbrich et al. Beyond corrosion: development of a single cell-ICP-ToF-MS method to uncover the process of microbiologically influenced corrosion. Metallomics, 2022. DOI:10.1093/mtomcs/mfac083
- Wang et al. Laser ablation-single particle-inductively coupled plasma mass spectrometry as a sensitive tool for bioimaging of silver nanoparticles in vivo degradation. Chinese Chemical Letters, 2022. DOI: 10.1016/j.cclet.2022.03.098
- Bland, G.; Zhang, P.; Valsami-Jones, E.; and Lowry, G.V. Application of Isotopically Labeled Engineered Nanomaterials for Detection and Quantification in Soils via Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Environ. Sci. Technol., 2022. DOI: 10.1021/acs.est.2c03737
- Taskula, S.; Stetten, L.; von der Kammer, F.; Hofmann, T. Platinum Nanoparticle Extraction, Quantification, and Characterization in Sediments by Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Nanomaterials, 2022. DOI: 10.3390/nano12193307
- Tou et al. Multi-method approach for analysis of road dust particles: elemental ratios, SP-ICP-TOF-MS, and TEM. Environ. Sci.: Nano, 2022. DOI: 10.1039/D2EN00409G
- Becker, P.; Koch, J.; Günther, D. Impact of ablation cell design in LA-ICP-MS quantification. Journal of Analytical Atomic Spectrometry, 2022. DOI: 10.1039/D2JA00167E
- Nakazato, M.; Asanuma, H.; Niki, S.; Iwano, H.; Hirata , T. Depth‐Profiling Determinations of Rare Earth Element Abundances and U‐Pb Ages from Zircon Crystals Using Sensitivity‐Enhanced Inductively Coupled Plasma‐Time of Flight‐Mass Spectrometry. Geostandards and Geoanalytical Research, 2022. DOI: 10.1111/ggr.12446
- Goodman, A.; Gundlach-Graham, A.; Bevers, S.; Ranville, J. Characterization of nano-scale mineral dust aerosols in snow by single particle inductively coupled plasma mass spectrometry. Environ. Sci.: Nano, 2022. DOI: 10.1039/D2EN00277A
- Tian et al. Simultaneous multi-element and multi-isotope detection in single-particle ICP-MS analysis: Principles and applications. TrAC Trends in Analytical Chemistry, 2022. DOI: 10.1016/j.trac.2022.116746
- Schweikert et al. Quantification in bioimaging by LA-ICPMS – Evaluation of isotope dilution and standard addition enabled by micro-droplets. Analytica Chimica Acta, 2022. DOI: 10.1016/j.aca.2022.340200
- Koolen et al. High-Throughput Sizing, Counting, and Elemental Analysis of Anisotropic Multimetallic Nanoparticles with Single-Particle Inductively Coupled Plasma. ACS Nano, 2022. DOI: 10.1021/acsnano.2c01840
- Mehrabi, K.; Dengler, M.; Nilsson, I.; Baumgartner, M.; Mora, C.: Günther D.; Gundlach-Graham A. Detection of magnetic iron nanoparticles by single-particle ICP-TOFMS: case study for a magnetic filtration medical device. Anal Bioanal Chem, 2022. DOI: 10.1007/s00216-022-04234-w
- Foster et al. Accumulation of molybdenum in major organs following repeated oral administration of bis‐choline tetrathiomolybdate in the Sprague Dawley rat. Journal of Applied Toxicology, 2022. DOI:10.1002/jat.4358
- von der Au, M.; Faßbender, S.; Ioannis Chronakis, M.; Vogl, J.; Meermann, B. Size determination of nanoparticles by ICP-ToF-MS using isotope dilution in microdroplets, J. Anal. At. Spectrom., 2022. DOI:10.1039/D2JA00072E
- Harycki, S.; Gundlach-Graham, A. Online microdroplet calibration for accurate nanoparticle quantification in organic matrices. Anal Bioanal Chem, 2022. DOI:10.1007/s00216-022-04115-2
- Montaño et al. Exploring Nanogeochemical Environments: New Insights from Single Particle ICP-TOFMS and AF4-ICPMS. ACS Earth Space Chem, 2022. DOI: 10.1021/acsearthspacechem.1c00350
- Szakas, S.; Lancaster, R.; Kaegi, R.; Gundlach-Graham, A. Quantification and Classification of Engineered, Incidental, and Natural Cerium-Containing Particles by spICP-TOFMS. Environmental Science: Nano, 2022. DOI: 10.1039/D1EN01039E
- Minelli et al. Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles. Nanoscale, 2022. In Focus | DOI: 10.1039/D1NR07775A
- Bland et al. Distinguishing Engineered TiO2 Nanomaterials from Natural Ti Nanomaterials in Soil Using spICP-TOFMS and Machine Learning. Environ. Sci. Technol., 2022. In Focus | DOI: 10.1021/acs.est.1c02950
- Neff, C.; Becker, P.; Gunther, D. Parallel flow ablation cell for short signal duration in LA-ICP-TOFMS element imaging. Journal of Analytical Atomic Spectrometry, 2022. In Focus | DOI: 10.1039/D1JA00421B
- Voloaca et al. Elemental Mapping of Human Malignant Mesothelioma Tissue Samples Using High-Speed LA−ICP−TOFMS Imaging. Analytical Chemistry, 2022. In Focus | DOI: 10.1021/acs.analchem.1c04857
- Brünjes, R.; Schüürman, J.; von der Kammer, F.; Hofmann, T. Rapid Analysis of Gunshot Residues with Single Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Forensic Science International, 2022. In Focus | DOI: 10.1016/j.forsciint.2022.111202
- Wang. J.; Nabi, M.; Erfani, M.; Goharian, E.; Baalousha, M. Identification and Quantification of Anthropogenic Nanomaterials in Urban Rain and Runoff Using Single Particle-Inductively Coupled Plasma-Time of Flight-Mass Spectrometry. Environmental Science Nano, 2022. DOI: 10.1039/D1EN00850A
2021
- Schoeberl et al. Cisplatin Uptake in Macrophage Subtypes at the Single-Cell Level by LA-ICP-TOFMS Imaging. Analytical Chemistry, 2021. DOI:10.1021/acs.analchem.1c03442
- Qin, W.; Stärk, H.J.; Reemtsma, T. Ruthenium red: a highly efficient and versatile cell staining agent for single-cell analysis using inductively coupled plasma time-of-flight mass spectrometry. Analyst, communication, 2021.
DOI:10.1039/D1AN01143J - Holbrook, T.; Gallot-Duval, D.; Reemtsma, T.; Wagner, S. Machine learning: our future spotlight into single-particle ICP-ToF-MS analysis. Journal of Analytical Atomic Spectrometry, 2021. In Focus | DOI:10.1039/D1JA00213A
- Nabi M,; Wang J.; Goharian E.; Baalousha, M. Temporal variation in TiO2 engineered particle concentrations in the Broad River during dry and wet weathers. Science of the Total Environment, 2021. DOI:10.1016/j.scitotenv.2021.151081
- Holbrook, T.; Gallot-Duval, D.; Reemtsma, T.; Wagner, S. An investigation into LA-spICP-ToF-MS uses for in situ measurement of environmental multi-elemental nanoparticles. Journal of Analytical Atomic Spectrometry, 2021. In Focus | DOI: 10.1039/D1JA00112D
- Xu et al. Impacts of Sediment Particle Grain Size and Mercury Speciation on Mercury Bioavailability Potential. Environ. Sci. Technol. 2021. DOI:10.1021/acs.est.1c03572
- Förster, M.; Bussweiler, Y.; Prelevic, D.; Daczko, N.; Buhre, S.; Mertz-Kraus, R.; Foley D. Sediment-Peridotite Reaction Controls Fore-Arc Metasomatism and Arc Magma Geochemical Signatures, Geosciences, 2021. In Focus | DOI: 10.3390/geosciences11090372
- Schueffl et al. Albumin-targeting of an oxaliplatin-releasing platinum(IV) prodrug results in pronounced anticancer activity due to endocytotic drug uptake in vivo. Chemical Science, 2021. DOI: 10.1039/d1sc03311e
- Mehrabi, K.; Kaegi, R.; Günther, D.; Gundlach-Graham, A. Quantification and Clustering of Inorganic Nanoplastics in Wastewater Treatment Plants acros Switzerland. Chimia, 2021. In Focus | DOI:10.2533/chimia.2021.642
- Faßbender et al. Species-specific isotope dilution analysis of monomethylmercury in sediment using GC/ICP-ToF-MS and comparison with ICP-Q-MS and ICP-SF-MS. Analytical and Bioanalytical Chemistry, 2021. In Focus | DOI: 10.1007/s00216-021-03497-z
- Norrfors, K.K.; Micić, V.; Borovinskaya, O.; von der Kammer, F.; Hofmann, T.; Cornelis, G. A critical evaluation of short columns forestimating the attachment efficiency ofengineered nanomaterials in natural soils. Environmental Science: Nano, 2021. In Focus | DOI: 10.1039/d0en01089h
- Baalousha, M.; Wang, J.; Erfani, M.; Goharian, E. Elemental fingerprints in natural nanomaterials determined using SP-ICP-TOF-MS and clustering analysis. Science of The Total Environment, 2021. In Focus| DOI: 10.1016/j.scitotenv.2021.148426
- Schweikert et al. Micro-droplet-based calibration for quantitative elemental bioimaging by LA-ICPMS. Analytical and Bioanalytical Chemistry, 2021. In Focus | DOI:10.1007/s00216-021-03357-w
- Krzemnicki, M.; Wang, H.; Büche, S. A New Type of Emerald from Afghanistan’s Panjshir Valley. The Journal of Gemmology, 2021. DOI:10.15506/JoG.2021.37.5.474
- Mehrabi, K.; Kaegi, R.; Günther, D.; Gundlach-Graham, A. Emerging investigator series: Automated Single-Nanoparticle Quantification and Classification: A Holistic Study of Particles into and out of Wastewater Treatment Plants in Switzerland. Environ. Sci.: Nano, 2021. In Focus | DOI:10.1039/D0EN01066A
- Gundlach-Graham, A. Multiplexed and multi-metal single-particle characterization with ICP-TOFMS. Chapter in Comprehensive Analytical Chemistry, 2021. In Focus | DOI: 10.1016/bs.coac.2021.01.008
- Meili-Borovinskaya et al. Analysis of Complex Particle Mixtures by Asymmetrical Flow Field-Flow Fractionation Coupled to Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Journal of Chromatography, 2021. In Focus | DOI: 10.1016/j.chroma.2021.461981
- Theiner, S.; Schoeberl, A.; Schweikert, A.; Keppler, B.; Koellensperger, G. Mass spectrometry techniques for imaging and detection of metallodrugs. Current Opinion in Chemical Biology, 2021. In Focus | DOI:10.1016/j.cbpa.2020.12.005
- Wang, H.; Krzemnicki, M. Multi-element analysis of minerals using laser ablation inductively couple plasma time-of-flight mass spectrometry and geochemical data visualization using t-distributed stochastic neighbor embedding: Case study on emeralds from various deposits. Journal of Analytical Atomic Spectrometry, 2021. In Focus | DOI: 10.1039/D0JA00484G
- Jahn, L.; Bland, G.; Monroe, L.; Sullivan, R.; Meyer, M. Single-Particle Elemental Analysis of Vacuum Bag Dust Samples Collected From the International Space Station by SEM/EDX and sp-ICP-ToF-MS. Aerosol Science and Technology, 2021. In Focus | DOI: 10.1080/02786826.2021.1874610
- Chapman et al. Chemical and physical heterogeneity within native gold: Implications for the design of gold particles studies. Mineralium Deposita, 2021. In Focus | DOI: 10.1007/s00126-020-01036-x
- Wernitznig et al. Plecstatin-1 induces an immunogenic cell death signature in colorectal tumour spheroids. Metallomics, 2021. In Focus | DOI: 10.1039/D0MT00227E
- Chew, D.; Drost, K.; Marsh, J.; Petrus, J. LA-ICP-MS imaging in the geosciences and its applications to geochronology. Chemical Geology, 2021. In Focus | DOI: 10.1016/j.chemgeo.2020.119917
- Nabi, M.; Wang, J.; Baalousha, M. Episodic surges in titanium dioxide engineered particle concentrations in surface waters following rainfall events. Chemosphere, 2021. In Focus | DOI: 10.1016/j.chemosphere.2020.128261
2020
- Jahn, L. et al. Metallic and Crustal Elements in Biomass-Burning Aerosol and Ash: Prevalence, Significance, and Similarity to Soil Particles. ACS Earth Space Chem, 2020. DOI: 10.1021/acsearthspacechem.0c00191
- Laughton, S. et al. Methanol-based extraction protocol for insoluble and moderately water-soluble nanoparticles in plants to enable characterization by single particle ICP-MS. Analytical and Bioanalytical Chemistry, 2020. In Focus | DOI:10.1007/s00216-020-03014-8
- Hendriks, L.; Skjolding, L. Single-Cell Analysis by Inductively Coupled Plasma–Time-of-Flight Mass Spectrometry to Quantify Algal Cell Interaction with Nanoparticles by Their Elemental Fingerprint. Spectroscopy, 2020. In Focus
- Theiner, S. et al. Single-Cell Analysis by Use of ICP-MS. Journal of Analytical Atomic Spectrometry 2020. In Focus | DOI: 10.1039/D0JA00194E
- Gundlach-Graham, A. & Mehrabi, K. Monodisperse Microdroplets: A Tool that Advances Single-Particle ICP-MS Measurements. Journal of Analytical Atomic Spectrometry 2020. In Focus | DOI: 10.1039/D0JA00213E
- Thompson, J.; Danyushevsky, L.; Borovinskaya, O.; Tanner, M. Time-of-flight ICP-MS laser ablation zircon geochronology: assessment and comparison against quadrupole ICP-MS. Journal of Analytical Atomic Spectrometry 2020. In Focus | DOI: 10.1039/d0ja00252f
- Neff, C. et al. Capabilities of automated LA-ICP-TOFMS imaging of geological samples. Journal of Analytical Atomic Spectrometry 2020. In Focus | DOI: 10.1039/D0JA00238K
- Becker, P. et al. Forensic Float Glass Fragment Analysis Using Single-Pulse Laser Ablation Inductively Coupled Plasma Time of Flight Mass Spectrometry. Journal of Analytical Atomic Spectrometry 2020. In Focus | DOI: 10.1039/D0JA00284D
- Bevers, S. et al. Quantification and Characterization of Nanoparticulate Zinc in an Urban Watershed. Frontiers in Environmental Science: Biogeochemical Dynamics 2020. DOI: 10.3389/fenvs.2020.00084
- Rubatto, D. et al. Identification of growth mechanisms in metamorphic garnet by high-resolution trace element mapping with LA-ICP-TOFMS. Contrib Mineral Petrol 2020. DOI: 10.1007/s00410-020-01700-5
- Theiner S. et al. Laser ablation-ICP-TOFMS imaging of germ cell tumors of patients undergoing platinum-based chemotherapy. Metallomics 2020. In Focus | DOI: 10.1039/D0MT00080A
- von der Au, M. et al. Single cell-inductively coupled plasma-time of flight-mass spectrometry approach for ecotoxicological testing. Algal Research 2020. In Focus | DOI:10.1016/j.algal.2020.101964
- Bussweiler, Y. et al. Trace element mapping of high-pressure, high-temperature experimental samples with laser ablation ICP time-of-flight mass spectrometry–Illuminating melt-rock reactions in the lithospheric mantle. Lithos, 2020. In Focus | DOI: 10.1016/j.lithos.2019.105282
- Van Malderen, S., Van Acker, T., Vanhaecke, F. Sub-µm nanosecond LA-ICP-MS imaging at pixel acquisition rates above 250 Hz via a low-dispersion setup. Analytical Chemistry 2020. In Focus | DOI:10.1021/acs.analchem.9b05056
- Phyo, M.M. et al. U–Pb Dating of Zircon and Zirconolite Inclusions in Marble-Hosted Gem-Quality Ruby and Spinel from Mogok, Myanmar. Minerals 2020. In Focus | DOI: 10.3390/min10020195
2019
- Erhardt, T.; Jensen, C.; Borovinskaya, O.; Fischer, H. Single particle characterization and total elemental concentration measurements in polar ice using CFA-icpTOF. Environmental Science & Technology 2019. In Focus | DOI: 10.1021/acs.est.9b03886
- Mehrabi, K.; Günther, D.; Gundlach-Graham, A. Single-Particle ICP-TOFMS with Online Microdroplet Calibration for the Simultaneous Quantification of Diverse Nanoparticles in Complex Matrices. Environmental Science: Nano 2019. DOI: 10.1039/C9EN00620F
- Ubide, T.; Caulfield, J.; Brandt, C.; Bussweiler, Y.; Mollo, S.; Di Stefano, F.; Nazzari, M.; Scarlato, P. Deep Magma Storage revealed by Multi-Method Elemental Mapping of Clinopyroxene Megacrysts at Stromboli Volcano. Frontiers in Earth Science 2019. In Focus | DOI:10.3389/feart.2019.00239
- Theiner, S.; Schoeberl, A.; Fischer, L.; Neumayer, S.; Hann, S.; Koellensperger, G. FI-ICP-TOFMS for quantification of biologically essential trace elements in cerebrospinal fluid-high-throughput at low sample volume. Analyst 2019. DOI:10.1039/C9AN00039A
- Löhr, K.; Borovinskaya, O., Tourniaire, G.; Panne, U.; Jakubowski, N. Arraying of single cells for quantitative highthroughput Laser Ablation ICP-TOF-MS. Analytical Chemistry 2019. DOI:10.1021/acs.analchem.9b00198
- Hendriks, L.; Gundlach-Graham, A.; Günther, D. Performance of sp-ICP-TOFMS with signal distributions fitted to a compound Poisson model. Journal of Analytical Atomic Spectrometry 2019. DOI:10.1039/C9JA00186G
- Arakawa, A.; Jakubowski, N.; Koellensperger, G.; Theiner, S.; Schweikert, A.; Flemig, S.; Iwahata, D.; Traub, H.; Hirata, T. Quantitative imaging of silver nanoparticles and essential elements in thin sections of fibroblast multicellular spheroids by high resolution laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS). Analytical Chemistry 2019. DOI:10.1021/acs.analchem.9b02239
- Krebs, M.; Pearson, D.; Fagan, A.; Bussweiler, Y.; Sarkar, C. The application of trace elements and Sr–Pb isotopes to dating and tracing ruby formation: The Aappaluttoq deposit, SW Greenland. Chemical Geology 2019. DOI:10.1016/j.chemgeo.2019.05.035
- Theiner, S.; Schweikert, A.; Van Malderen, S.; Schoeberl, A.; Neumayer, S.; Jilma, P.; Peyrl, A.; Koellensperger, G. Laser ablation-inductively coupled plasma time-of-flight mass spectrometry imaging of trace elements at single cell level for clinical practice. Analytical Chemistry 2019. DOI:10.1021/acs.analchem.9b00698
- Theiner, S.; Schoeberl, A.; Neumayer, S.; Koellensperger, G. FI-ICP-TOFMS for high-throughput and low volume multi-element analysis in environmental and biological matrices. Journal of Analytical Atomic Spectrometry 2019. DOI:10.1039/C9JA00022D
- Loosli, F.; Wang, J.; Rothenberg, S.; Bizimis, M.; Winkler, C.; Borovinskaya, O.; Flamigni, L.; Baalousha, M. Sewage spills are a major source of titanium dioxide engineered (nano)-particles into the environment. Environ. Sci.: Nano 2019. In Focus | DOI: 10.1039/c8en01376d
- Bauer, O.; Hachmöller, O.; Borovinskaya, O.; Sperling, M.; Schurek, H.; Ciarimboli, G.; Karst, U. LA-ICP-ToFMS for rapid, all-elemental and quantitative bioimaging, isotopic analysis and the investigation of plasma processes”, Journal of Analytical Atomic Spectrometry 2019. In Focus | DOI: 10.1039/C8JA00288F
- Hendriks, L.; Ramkorun-Schmidt, B.; Gundlach-Graham, A.; Koch, J.; Grass, R. N.; Jakubowski, N.; Gunther, D. Single-Particle ICP-MS with Online Microdroplet Calibration: Toward Matrix Independent Nanoparticle Sizing. Journal of Analytical Atomic Spectrometry 2019. In Focus | DOI: 10.1039/C8JA00397A
- Burgay, F.; Erhardt, T.; Lunga, D. D.; Jensen, C. M.; Spolaor, A.; Vallelonga, P.; Fischer, H.; Barbante, C.; Fe2+ in ice cores as a new potential proxy to detect past volcanic eruptions. Science of The Total Environment 2019. In Focus | DOI: 10.1016/j.scitotenv.2018.11.075
- Burger, M.; Hendriks, L.; Kaeslin, J.; Gundlach-Graham, A.; Hattendorf, B.; Günther, D. Characterization of inductively coupled plasma time-of-flight mass spectrometry in combination with collision/reaction cell technology–insights from highly time-resolved measurements. Journal of Analytical Atomic Spectrometry 2019. In Focus | DOI: 10.1039/C8JA00275D
2018
- Hegetschweiler, A.; Borovinskaya, O.; Staudt, T.; Kraus, T. Single particle mass spectrometry of titanium and niobium carbonitride precipitates in steels. Analytical Chemistry 2018. In Focus | DOI:10.1021/acs.analchem.8b04012
- Gundlach-Graham, A.; Hendriks, L.; Mehrabi, K.; Günther, D. Monte Carlo Simulation of Low-Count Signals in Time-of-Flight Mass Spectrometry and its Application to Single-Particle Detection. Analytical Chemistry 2018. DOI: 10.1021/acs.analchem.8b01551
- Ronzani, A.; Pointurier, F.; Rittner, M.; Borovinskaya, O.; Tanner, M.; Hubert, A.; Humbert, A.C.; Aupiais, J.; Dacheux, N. Capabilities of Laser Ablation – ICP-TOF-MS Coupling for Isotopic Analysis of Individual Uranium Micrometric Particles. Journal of Analytical Atomic Spectrometry 2018. In Focus | DOI: 10.1039/C8JA00241J
- Käser, D.; Hendriks, L.; Koch, J.; Günther, D. Depth Profile Analyses with Sub 100-nm Depth Resolution of a Metal Thin Film by Femtosecond – Laser Ablation – Inductively Coupled Plasma – Time-of-Flight Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2018. In Focus | DOI:10.1016/j.sab.2018.08.002
- Gundlach-Graham, A.; Garofalo, P.S.; Schwarz, G.; Redi, D.; Günther, D. High‐Resolution, Quantitative Element Imaging of an Upper Crust, Low‐Angle Cataclasite (Zuccale Fault, Northern Apennines) by Laser Ablation ICP Time‐of‐Flight Mass Spectrometry. Geostandards and Geoanalytical Research 2018. In Focus | DOI: 10.1111/ggr.12233
- Ohata, M.; Hagino, H. Examination on simultaneous multi-element isotope ratio measurement by inductively coupled plasma time of flight mass spectrometry. International Journal of Mass Spectrometry 2018. In Focus | DOI:10.1016/j.ijms.2018.03.003
- Gundlach-Graham, A. An Elemental Regeneration. The Analytical Scientist 2018. URL Link
- Naasz, S.; et al. Multi-element analysis of single nanoparticles by ICP-MS using quadrupole and time-of-flight technologies. Journal of Analytical Atomic Spectrometry 2018. In Focus | DOI:10.1039/C7JA00399D
- Gondikas, A.; et al. Where is the nano? Analytical approaches for the detection and quantification of TiO 2 engineered nanoparticles in surface waters. Environmental Science: Nano 2018. In Focus | DOI:10.1039/c7en00952f
- Hendriks, L.; Gundlach-Graham, A.; Günther, D. Analysis of Inorganic Nanoparticles by Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. CHIMIA International Journal for Chemistry 2018. In Focus | DOI: 10.2533/chimia.2018.221
2017
- Hagino, H.; Tonegawa, Y.; Tanner, M.; Borovinskaya, O.; Hikita, T.; Shimono, A.; Application of ICP-TOFMS for Real-Time Measurement of Trace Elements in Automotive Exhaust Particulate Matters from Engine Oil Additives. Transactions of Society of Automotive Engineers of Japan 2017. In Focus | DOI: 10.11351/jsaeronbun.48.1341
- Hendriks, L.; et al. Characterization of a new ICP-TOFMS instrument with continuous and discrete introduction of solutions, Journal of Analytical Atomic Spectrometry 2017. In Focus | DOI: 10.1039/C6JA00400H
- Burger, M.; et al. Capabilities of laser ablation inductively coupled plasma time-of-flight mass spectrometry. Journal of Analytical Atomic Spectrometry 2017. DOI: 10.1039/C7JA00236J
- Van Malderen, S.; et al. Three-Dimensional reconstruction of the Tissue-Specific Multielemental Distribution within Ceriodaphnia dubia via Multimodal Registration Using Laser Ablation ICP-Mass Spectrometry and X-ray Spectroscopic Techniques. Analytical Chemistry 2017. DOI: 10.1021/acs.analchem.7b00111
- Praetorius, A.; et al. Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environmental Science: Nano 2017. In Focus |DOI: 10.1039/C6EN00455E
- Bussweiler, Y.; Borovinskaya, O.; Tanner, M. Laser Ablation and inductively coupled plasma-time-of-flight mass spectrometry-A powerful combination for high-speed multielemental imaging on the micrometer scale. Spectroscopy 2017. In Focus | Link
2016
- Wang, H.; et al. Simultaneous High Sensitivity Trace-Element and Isotopic Analysis of Gemstones Using Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. The Journal of Gemmology 2016.
- Wiedenbeck, M. Time-of-flight Mass Spectrometry: A New Tool for Laser Ablation Analyses. Elements Magazine 2016. In Focus | Link
- Gundlach-Graham, A. Toward faster and higher resolution LA–ICPMS imaging: on the co-evolution of LA cell design and ICPMS instrumentation. Analytical and Bioanalytical Chemistry 2016. In Focus | DOI: 10.1007/s00216-015-9251-8
2015
- Harlaux, M.; et al. Capabilities of sequential and quasi-simultaneous LA-ICPMS for the multi-element analysis of small quantity of liquids (pl to nl): insights from fluid inclusion analysis. Journal of Analytical Atomic Spectrometry 2015. In Focus | DOI: 10.1039/C5JA00111K
- Gundlach-Graham, A.; et al. High-speed, high-resolution, multi-elemental LA-ICP-TOFMS imaging: Part I instrumentation and two-dimensional imaging of geological samples. Analytical Chemistry 2015. In Focus | DOI:10.1021/acs.analchem.5b01196
- Burger, M.; et al. High-speed, high-resolution, multi-elemental LA-ICP-TOFMS imaging: Part II. Critical evaluation of quantitative three-dimensional imaging of major, minor and trace elements in geological samples. Analytical Chemistry 2015. In Focus | DOI: 10.1021/acs.analchem.5b01977
2014
- Borovinskaya, O.; et al. Simultaneous Mass Quantification of Nanoparticles of Different Composition in a Mixture by Microdroplet Generator-ICPTOFMS. Analytical Chemistry 2014. In Focus | DOI: 10.1021/ac501150c
- Borovinskaya, O.; et al. Diffusion- and velocity-driven spatial separation of analytes from single droplets entering an ICP off-axis. J. Anal. At. Spectrom. 2014. DOI: 10.1039/c3ja50307k
2013
- Neubauer, U. Wie Forscher Nanopartikel in der Umwelt nachweisen. NZZ, 2013
- Borovinskaya, O.; et al. A prototype of a new inductively coupled plasma timeof-flight mass spectrometer providing temporally resolved, multi-element detection of short signals generated by single particles and droplets. J. Anal. At. Spectrom 2013. DOI: 10.1039/C2JA30227F
2008
- Tanner, M.; Günther, D. A new ICP–TOFMS. Measurement and readout of mass spectra with 30 µs time resolution, applied to in-torch LA–ICP–MS. Anal Bioanal Chem 2008. DOI: 10.1007/s00216-008-1869-3,
Resources
- Determination of Size and Concentration of Nanoparticles in Seawater With the icpTOF Quantistar PDF
- Imaging the Distribution of Elements in Antarctic Ice Cores with LA-ICP-TOFMS PDF
- Single Cell ICP-MS Analysis with the icpTOF Provides New Insights into Cell Ionomics PDF
- A Study of In Vivo HgSe Nanoparticle Formation with Multi-Element Single Particle ICP-TOFMS PDF
- High Speed, High Resolution, Multi-Element Imaging of Plant Root Cross Sections to Highlight Nutrient Transport Pathways: App Note PDF
- Quantifying the Multi-Element Composition of Single Steel Nanoparticles with the icpTOF: Application Note PDF
- High-Speed Elemental Imaging of Cisplatin-Perfused Tissue with Laser Ablation-icpTOF: Application Note PDF
- Fast Multi-Element LA-icpTOF Mapping of Gold Grains: Application Note PDF
- Fast, High-Resolution Imaging of Sphalerite with the icpTOF: Application Note PDF
- Multi-Element Detection of Single Nanoparticles with icpTOF: Application Note PDF
- Laser Ablation with the icpTOF: Application Note PDF
- The icpTOF as a Versatile Tool for Elemental Analysis of Single Particles and for Fast Laser Ablation Imaging: Poster APWC 2017 PDF
- High-Resolution, All-Element Imaging of a Garnet Grain with the icpTOF
- 3D Tissue Compositional Profiling with the icpTOF: Analytical Chemistry Publication and EWCPS 2017 Poster PDF
- LA icpTOF – A Reliable Tool for Rapid Elemental Imaging of Carbonates: Poster EWCPS 2017 PDF
- SP-ICP-MS Analysis of Complex Nanoparticles in Liquids and Air: Poster ICCEEN 2016 PDF
- High-Speed, Multi-Element Imaging using Fast Laser Ablation Sampling Systems with the icpTOF: Poster EWLA 2016 PDF
- Characterizing Fe-Rich Nanoparticles: Poster ASMS 2016 PDF
- Analysis of Nanoparticles with the icpTOF: Poster WCPS 2016 PDF
- icpTOF Excels in Single-Particle ICP-MS Comparison Study
- Analysis of Engineered and Natural Soil Nanoparticles With the icpTOF and a Machine Learning Model
- Increased Multi-Elemental Imaging Rate with New PFAC and icpTOF
- LA-ICP-TOFMS Imaging of Malignant Tissue Samples with the icpTOF
- Multi-Elemental, Single-Particle Analysis of Gunshot Residue with the icpTOF
- Combining Laser Ablation with Single Particle ICP-TOFMS for the Study of Multi-Element Particles in Environmental Systems
- Online Microdroplet Calibration with the icpTOF Enables High-Throughput Nanoparticle Studies
- icpTOF Excels in Species-Specific Isotope Dilution (SSID) Studies of Sediment from Finow Canal, Germany
- Characterization of Natural Nanomaterials in Soil With the icpTOF
- Novel Standardization Technique for Quantitative Bioimaging Developed with the icpTOF
- Analysis of Engineered Nanomaterials in Natural Soils with the icpTOF
- Characterization of Engineered Nanoparticles from Wastewater Using the icpTOF
- Book Chapter Discusses Benefits of Measuring Multi-Metal Nanoparticles with sp-ICP-TOFMS
- ICP-TOFMS Excels in Single-Cell and Bioimaging Analysis of Metallodrugs
- Multi-Element Analysis of Gem Minerals Using the icpTOF
- Characterizing Single Particles in the Air of the International Space Station Using the icpTOF
- LA-ICP-TOFMS Imaging With the icpTOF as a Clinical Diagnostic Tool for Cancer
- Determining the Elemental Composition of Individual Particles in Water With the icpTOF
- Multi-Element Analysis of Single Particles in Biomass-Burning Aerosol Using the icpTOF
- LA-ICP-TOFMS Excels in 2D and 3D Imaging of Geological and Biological Materials
- TOFWERK Celebrates Over 50 icpTOF Publications
- Screening Anticancer Drugs with the icpTOF
- A New Method for Forensic Float Glass Analysis Using the icpTOF
- Characterization of Metal Nanoparticles in Plant Tissue Using the icpTOF
- Improved Elemental Imaging of Mineral Samples With Automated Control System for LA-ICP-TOFMS
- Tutorial Review Reveals ICP-TOFMS as Influential Tool for Single-Cell Analysis
- Advancing Single-Particle ICP-MS With Monodisperse Microdroplet Generation
- High-Resolution Trace Element Mapping With the icpTOF
- Performance of a New Low-Dispersion Laser Ablation System with the icpTOF
- U–Pb Dating with the icpTOF Elucidates Ruby Formation
- icpTOF Measurements Contribute to Development of a New Method for Fe2+ Quantification in Ice Cores
- Measurement and Quantification of Diverse Nanoparticles with the icpTOF
- Evaluation of the icpTOF in Combination with Collision/Reaction Cell Technology
- High-Resolution Depth Profile by fs-LA – Inductively Coupled Plasma – Mass Spectrometry
- Elemental Imaging with the icpTOF Furthers Understanding of Fault Formation
- Performance Comparison of Multi-Element Isotope Ratio Measurements with ICP-TOFMS
- Analysis of Inorganic Nanoparticles in Complex Matrices
- Characterizing the Performance of the icpTOF for Continuous Solutions and Single Microdroplets
- Single-Particle Multi-Element Fingerprinting of Engineered Nanoparticles in Soils with icpTOF
- October Elements Magazine Spotlights icpTOF for Laser Ablation Analyses
- Toward Faster and Higher Resolution LA–ICPMS Imaging
- The Advantages of TOF for ICP-MS Analysis of Fluid Inclusions
- High-Speed, Multi-Elemental Imaging for Geological Samples with LA-ICP-TOFMS
- Advantages of Time-of-Flight Mass Spectrometry Over Quadrupole MS
- What is Single Particle ICP-MS?
- What is Laser Ablation ICP-MS Imaging?
- icpTOF Multi-Elemental Imaging Characterizes Trace Elements in Subduction Zone Studies
- Asymmetrical Flow FFF (AF4) Coupled to an icpTOF Provides Simultaneous Detection of all Particles in Complex Samples
- LA-ICP-TOFMS Imaging With the icpTOF Reveals Trace Element Heterogeneity in Gold Grains
- Perspective Article on Single-Cell Analysis with ICP-TOFMS in Spectroscopy, October 2020 PDF
- icpTOF Excels in U-Pb Zircon Geochronology Dating
- Single Cell Analysis with the icpTOF Reveals Ecotoxicological Effects of Metals
- Lithospheric Mantle Element Mapping with LA-ICP-TOFMS
- Elemental Analysis of Polar Ice and Dust Particles with the icpTOF R
- Elemental Mapping with the icpTOF Reveals Deep Magma Storage
- Measuring TiO2 Engineered Particle Concentrations in Surface Waters with Multi-element sp-ICP-MS
- Rapid, All-Elemental Bioimaging with LA-icpTOF
- Characterization of Titanium and Niobium Carbonitride Precipitates in Steel
- Isotopic Measurements of Individual Uranium Micrometric Particles
- Real-Time Measurement of Trace Elements in Automotive Exhaust
- Advantages of TOFMS for Single Nanoparticle ICP-MS
- Detection and Quantification of Titanium Dioxide Engineered Nanoparticles in Surface Waters
- Perspective Article on Multielemental Imaging with Laser Ablation ICP–TOFMS in May Issue of Spectroscopy
- Quantification of Metallic Nanoparticles with ICP-TOFMS
- TOFpilot: Real-Time Laser Ablation Imaging with the icpTOF
- Spectroscopy E-Symposium: Advantages of ICP-TOFMS for the Analysis of Short Transient Signals
- Webinar: TOFpilot- Integrated Control Software for the icpTOF PDF
- Webinar: Selecting the Right icpTOF for Your Research
- Webinar: Maximum Sensitivity for Particles, Cells, and Bioimaging with the icpTOF S2 PDF
- icpTOF Webinar Series: Multi-Element Laser Ablation Imaging and Spot Analysis View Video PDF
- icpTOF Webinar Series: Multi-Element, Single-Particle Analysis View Video PDF
- Webinar: Fundamentals and Applications of the icpTOF View Video PDF
- Simple, Fast and Accurate Multi-Element Single-Particle and Single-Cell Analysis With the icpTOF Quantistar PDF
- White Paper: TOFpilot- Integrated Control Software for the icpTOF PDF
Product Information
Related Applications
High-speed mass spectral acquisition and simultaneous, all-element analysis are inherent performance features of all TOFWERK TOFs, making the icpTOF product line the ideal ICP-MS detector for multi-element single particle analysis or laser ablation imaging.