The icpTOF Delivers All-Element, High Resolution Detection for Nanoparticles and Laser Ablation Imaging

An inductively coupled plasma mass spectrometer (ICP-MS) that simultaneously measures all isotopes at unprecedented speed

Learn More About the icpTOF S2

Maximum sensitivity and speed for high resolution bioimaging, single cell analysis, and single particle analysis

Advantages of the icpTOF

The icpTOF is an inductively coupled plasma mass spectrometer (ICP-MS) that couples the source and interface hardware of a Thermo Scientific iCAP RQ to a TOFWERK TOF mass analyzer.  The iCAP RQ hardware provides versatile sample introduction, robust ICP, simple access to cones and lenses and the Q-cell technology. The TOF adds simultaneous all-element detection, linear response and mass resolving power >6000, while maintaining QMS-equivalent sensitivity.   With high-speed mass spectral acquisition and simultaneous analysis of all isotopes, the icpTOF is the ideal ICP-MS detector for multi-element single particle analysis or fast laser ablation imaging.
  • All the elements. All the time. The icpTOF always records complete mass spectra, so you never miss an analyte or interference signal.
  • High mass resolution. The icpTOF 2R has a mass resolving power of 6000 allowing you to separate interfering ions.
  • Precise isotope ratios. The icpTOF simultaneously measures all isotopes, thus eliminating the susceptibility of your measurements to source and sample fluctuations.  Precision approaches statistical limits.
  • High speed detection. The icpTOF records a complete mass spectrum every 12-50 µs making it the optimum detector for fast transient signals such as individual nanoparticles, fluid inclusions and laser ablation pixels.
  • Maximum sensitivity.  The icpTOF S2 has maximum sensitivity to increase image resolution and detect smaller particles with high SNR.
Selecting the Right icpTOF for Your Research
Play Video

Webinar: Selecting the Right icpTOF for Your Research

Download icpTOF Single Particle Brochure Download icpTOF Laser Ablation Brochure

icpTOF R, icpTOF 2R, and icpTOF S2 Models

The icpTOF R,  icpTOF 2R, and icpTOF S2 couple TOFWERK time-of-flight (TOF) mass analyzers to the source and interface hardware of a Thermo iCAP RQ.  The optimized performance points enable diverse applications.  The high resolution 2R is the choice for applications that demand separation of difficult isobaric interferences. The maximum sensitivity of the S2 increases spatial resolution for bioimaging and allows detection of smaller particles with high SNR.

Mass Resolving Power (ΔM/M at FWHM)

Sensitivity (cps/ppb for 238U)

All Element Analysis

icpTOF R 3000 50000 Yes
icpTOF 2R 6000 30000 Yes

icpTOF S2

900 300000 Yes
Download Complete icpTOF Specifications Table

icpTOF Hardware Design

  • All icpTOF models include the iCAP RQ source and interface (blue) with Q-cell technology for suppression of matrix ions
  • The TOF ion drift chamber (yellow) of the icpTOF 2R is two times longer than that of the icpTOF R, leading to a doubling of mass resolving power
  • The compact icpTOF S2 acquires complete mass spectra at the highest speed, leading to maximum time resolution and sensitivity.

Notch Filter Technology to Attenuate Plasma and Sample Matrix Ions

Signal of a laser ablation experiment on Zircon ‘Plesovice’ -naturally high in Hafnium content. Signal attenuation of notch filter set around mass 28 -Silicon, 40 -Ar-Plasma, 90 -Zircon and 179 -Hafnium to keep plasma and matrix ion signals <10 mV.

icpTOF Publications


  1. Chapman et al. Chemical and physical heterogeneity within native gold: Implications for the design of gold particles studies. Mineralium Deposita, 2021. In Focus 
  2. Wernitznig et al. Plecstatin-1 induces an immunogenic cell death signature in colorectal tumour spheroids. Metallomics, 2021. In Focus | DOI: 10.1039/D0MT00227E
  3. Chew, D.; Drost, K.; Marsh, J.; Petrus, J. LA-ICP-MS imaging in the geosciences and its applications to geochronology. Chemical Geology, 2021. In Focus | DOI: 10.1016/j.chemgeo.2020.119917
  4. Nabi, M.; Wang, J.; Baalousha, M. Episodic surges in titanium dioxide engineered particle concentrations in surface waters following rainfall events.  Chemosphere, 2021. In FocusDOI: 10.1016/j.chemosphere.2020.128261


  1. Theiner, S. et al.  Single-Cell Analysis by Use of ICP-MS. Journal of Analytical Atomic Spectrometry 2020In Focus | DOI: 10.1039/D0JA00194E
  2. Gundlach-Graham, A. & Mehrabi, K. Monodisperse Microdroplets: A Tool that Advances Single-Particle ICP-MS Measurements. Journal of Analytical Atomic Spectrometry 2020In Focus | DOI: 10.1039/D0JA00213E
  3. Thompson, J.; Danyushevsky, L.; Borovinskaya, O.; Tanner, M. Time-of-flight ICP-MS laser ablation zircon geochronology: assessment and comparison against quadrupole ICP-MS. Journal of Analytical Atomic Spectrometry 2020In FocusDOI: 10.1039/d0ja00252f
  4. Neff, C. et al. Capabilities of automated LA-ICP-TOFMS imaging of geological samples. Journal of Analytical Atomic Spectrometry 2020. In Focus | DOI: 10.1039/D0JA00238K  
  5. Becker, P. et al.  Forensic Float Glass Fragment Analysis Using Single-Pulse Laser Ablation Inductively Coupled Plasma Time of Flight Mass Spectrometry. Journal of Analytical Atomic Spectrometry 2020. In Focus | DOI: 10.1039/D0JA00284D
  6. Bevers, S. et al.  Quantification and Characterization of Nanoparticulate Zinc in an Urban Watershed. Frontiers in Environmental Science: Biogeochemical Dynamics 2020DOI: 10.3389/fenvs.2020.00084
  7. Rubatto, D. et al.  Identification of growth mechanisms in metamorphic garnet by high-resolution trace element mapping with LA-ICP-TOFMS. Contrib Mineral Petrol  2020. DOI: 10.1007/s00410-020-01700-5 
  8. Theiner S. et al. Laser ablation-ICP-TOFMS imaging of germ cell tumors of patients undergoing platinum-based chemotherapy. Metallomics 2020. In FocusDOI: 10.1039/D0MT00080A
  9. von der Au, M. et al. Single cell-inductively coupled plasma-time of flight-mass spectrometry approach for ecotoxicological testing. Algal Research 2020. In Focus | DOI:10.1016/j.algal.2020.101964
  10. Bussweiler, Y. et al. Trace element mapping of high-pressure, high-temperature experimental samples with laser ablation ICP time-of-flight mass spectrometry–Illuminating melt-rock reactions in the lithospheric mantle. Lithos, 2020In FocusDOI: 10.1016/j.lithos.2019.105282
  11. Van Malderen, S., Van Acker, T., Vanhaecke, F. Sub-µm nanosecond LA-ICP-MS imaging at pixel acquisition rates above 250 Hz via a low-dispersion setup.  Analytical Chemistry 2020. In Focus | DOI:10.1021/acs.analchem.9b05056 
  12. Phyo, M.M. et al. U–Pb Dating of Zircon and Zirconolite Inclusions in Marble-Hosted Gem-Quality Ruby and Spinel from Mogok, Myanmar. Minerals 2020. In Focus | DOI: 10.3390/min10020195


  1. Erhardt, T.; Jensen, C.; Borovinskaya, O.; Fischer, H. Single particle characterization and total elemental concentration measurements in polar ice using CFA-icpTOF. Environmental  Science & Technology 2019. In Focus | DOI: 10.1021/acs.est.9b03886
  2. Mehrabi, K.; Günther, D.; Gundlach-Graham, A. Single-Particle ICP-TOFMS with Online Microdroplet Calibration for the Simultaneous Quantification of Diverse Nanoparticles in Complex Matrices. Environmental Science: Nano 2019DOI: 10.1039/C9EN00620F
  3. Ubide, T.; Caulfield, J.; Brandt, C.; Bussweiler, Y.; Mollo, S.; Di Stefano, F.; Nazzari, M.; Scarlato, P. Deep Magma Storage revealed by Multi-Method Elemental Mapping of Clinopyroxene Megacrysts at Stromboli Volcano. Frontiers in Earth Science 2019. In Focus | DOI:10.3389/feart.2019.00239
  4. Theiner, S.; Schoeberl, A.; Fischer, L.; Neumayer, S.; Hann, S.; Koellensperger, G. FI-ICP-TOFMS for quantification of biologically essential trace elements in cerebrospinal fluid-high-throughput at low sample volume. Analyst 2019DOI:10.1039/C9AN00039A
  5. Löhr, K.; Borovinskaya, O., Tourniaire, G.; Panne, U.; Jakubowski, N. Arraying of single cells for quantitative highthroughput Laser Ablation ICP-TOF-MS. Analytical Chemistry 2019. DOI:10.1021/acs.analchem.9b00198
  6. Hendriks, L.; Gundlach-Graham, A.; Günther, D. Performance of sp-ICP-TOFMS with signal distributions fitted to a compound Poisson model. Journal of Analytical Atomic Spectrometry 2019DOI:10.1039/C9JA00186G
  7. Arakawa, A.; Jakubowski, N.; Koellensperger, G.; Theiner, S.; Schweikert, A.;  Flemig, S.; Iwahata, D.; Traub, H.; Hirata, T. Quantitative imaging of silver nanoparticles and essential elements in thin sections of fibroblast multicellular spheroids by high resolution laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS).  Analytical Chemistry 2019.  DOI:10.1021/acs.analchem.9b02239
  8. Krebs, M.; Pearson, D.;  Fagan, A.; Bussweiler, Y.; Sarkar, C. The application of trace elements and Sr–Pb isotopes to dating and tracing ruby formation: The Aappaluttoq deposit, SW Greenland. Chemical Geology 2019.  DOI:10.1016/j.chemgeo.2019.05.035
  9. Theiner, S.; Schweikert, A.; Van Malderen, S.;  Schoeberl, A.;  Neumayer, S.;  Jilma, P.;  Peyrl, A.; Koellensperger, G. Laser ablation-inductively coupled plasma time-of-flight mass spectrometry imaging of trace elements at single cell level for clinical practice. Analytical Chemistry 2019.  DOI:10.1021/acs.analchem.9b00698
  10. Theiner, S.; Schoeberl, A.; Neumayer, S.; Koellensperger, G. FI-ICP-TOFMS for high-throughput and low volume multi-element analysis in environmental and biological matrices. Journal of Analytical Atomic Spectrometry 2019DOI:10.1039/C9JA00022D
  11. Loosli, F.; Wang, J.; Rothenberg, S.;  Bizimis, M.; Winkler, C.; Borovinskaya, O.; Flamigni, L.; Baalousha, M. Sewage spills are a major source of titanium dioxide engineered (nano)-particles into the environment. Environ. Sci.: Nano 2019. In FocusDOI: 10.1039/c8en01376d
  12. Bauer, O.; Hachmöller, O.; Borovinskaya, O.; Sperling, M.; Schurek, H.;  Ciarimboli, G.; Karst, U. LA-ICP-ToFMS for rapid, all-elemental and quantitative bioimaging, isotopic analysis and the investigation of plasma processes”, Journal of Analytical Atomic Spectrometry 2019. In Focus | DOI: 10.1039/C8JA00288F
  13. Hendriks, L.; Ramkorun-Schmidt, B.; Gundlach-Graham, A.; Koch, J.; Grass, R. N.; Jakubowski, N.; Gunther, D. Single-Particle ICP-MS with Online Microdroplet Calibration: Toward Matrix Independent Nanoparticle Sizing. Journal of Analytical Atomic Spectrometry 2019. In Focus | DOI: 10.1039/C8JA00397A
  14. Burgay, F.; Erhardt, T.; Lunga, D. D.; Jensen, C. M.; Spolaor, A.; Vallelonga, P.; Fischer, H.; Barbante, C.;  Fe2+ in ice cores as a new potential proxy to detect past volcanic eruptions. Science of The Total Environment 2019. DOI: 10.1016/j.scitotenv.2018.11.075
  15. Burger, M.; Hendriks, L.; Kaeslin, J.; Gundlach-Graham, A.; Hattendorf, B.; Günther, D. Characterization of inductively coupled plasma time-of-flight mass spectrometry in combination with collision/reaction cell technology–insights from highly time-resolved measurements. Journal of Analytical Atomic Spectrometry 2019. In FocusDOI: 10.1039/C8JA00275D


  1. Hegetschweiler, A.; Borovinskaya, O.; Staudt, T.; Kraus, T. Single particle mass spectrometry of titanium and niobium carbonitride precipitates in steels. Analytical Chemistry 2018. In Focus | DOI:10.1021/acs.analchem.8b04012
  2. Gundlach-Graham, A.; Hendriks, L.; Mehrabi, K.; Günther, D.  Monte Carlo Simulation of Low-Count Signals in Time-of-Flight Mass Spectrometry and its Application to Single-Particle Detection. Analytical Chemistry 2018. DOI: 10.1021/acs.analchem.8b01551
  3. Ronzani, A.; Pointurier, F.; Rittner, M.; Borovinskaya, O.; Tanner, M.; Hubert, A.; Humbert, A.C.; Aupiais, J.; Dacheux, N. Capabilities of Laser Ablation – ICP-TOF-MS Coupling for Isotopic Analysis of Individual Uranium Micrometric Particles. Journal of Analytical Atomic Spectrometry 2018. In FocusDOI: 10.1039/C8JA00241J 
  4. Käser, D.; Hendriks, L.; Koch, J.; Günther, D. Depth Profile Analyses with Sub 100-nm Depth Resolution of a Metal Thin Film by Femtosecond – Laser Ablation – Inductively Coupled Plasma – Time-of-Flight Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2018. In FocusDOI:10.1016/j.sab.2018.08.002
  5. Gundlach-Graham, A.; Garofalo, P.S.; Schwarz, G.; Redi, D.; Günther, D. High‐Resolution, Quantitative Element Imaging of an Upper Crust, Low‐Angle Cataclasite (Zuccale Fault, Northern Apennines) by Laser Ablation ICP Time‐of‐Flight Mass Spectrometry. Geostandards and Geoanalytical Research 2018. In FocusDOI: 10.1111/ggr.12233
  6. Ohata, M.; Hagino, H. Examination on simultaneous multi-element isotope ratio measurement by inductively coupled plasma time of flight mass spectrometry. International Journal of Mass Spectrometry 2018In FocusDOI:10.1016/j.ijms.2018.03.003
  7. Gundlach-Graham, A. An Elemental Regeneration. The Analytical Scientist 2018. URL Link
  8. Naasz, S.; et al. Multi-element analysis of single nanoparticles by ICP-MS using quadrupole and time-of-flight technologies.  Journal of Analytical Atomic Spectrometry 2018. In FocusDOI:10.1039/C7JA00399D
  9. Gondikas, A.; et al. Where is the nano? Analytical approaches for the detection and quantification of TiO 2 engineered nanoparticles in surface waters. Environmental Science: Nano 2018.  In Focus | DOI:10.1039/c7en00952f
  10. Hendriks, L.; Gundlach-Graham, A.; Günther, D. Analysis of Inorganic Nanoparticles by Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. CHIMIA International Journal for Chemistry 2018. In FocusDOI: 10.2533/chimia.2018.221


  1. Hagino, H.; Tonegawa, Y.; Tanner, M.; Borovinskaya, O.; Hikita, T.; Shimono, A.; Application of ICP-TOFMS for Real-Time Measurement of Trace Elements in Automotive Exhaust Particulate Matters from Engine Oil Additives. Transactions of Society of Automotive Engineers of Japan 2017. In FocusDOI: 10.11351/jsaeronbun.48.1341 
  2. Hendriks, L.; et al. Characterization of a new ICP-TOFMS instrument with continuous and discrete introduction of solutions, Journal of Analytical Atomic Spectrometry 2017.  In FocusDOI: 10.1039/C6JA00400H
  3. Burger, M.; et al. Capabilities of laser ablation inductively coupled plasma time-of-flight mass spectrometry. Journal of Analytical Atomic Spectrometry 2017. DOI: 10.1039/C7JA00236J
  4. Van Malderen, S.; et al. Three-Dimensional reconstruction of the Tissue-Specific Multielemental Distribution within Ceriodaphnia dubia via Multimodal Registration Using Laser Ablation ICP-Mass Spectrometry and X-ray Spectroscopic Techniques. Analytical Chemistry 2017. DOI: 10.1021/acs.analchem.7b00111
  5. Praetorius, A.; et al. Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environmental Science: Nano 2017.  In Focus |DOI: 10.1039/C6EN00455E
  6. Bussweiler, Y.; Borovinskaya, O.; Tanner, M. Laser Ablation and inductively coupled plasma-time-of-flight mass spectrometry-A powerful combination for high-speed multielemental imaging on the micrometer scale. Spectroscopy 2017. In Focus | Link


  1. Wang, H.; et al. Simultaneous High Sensitivity Trace-Element and Isotopic Analysis of Gemstones Using Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. The Journal of Gemmology 2016.
  2. Wiedenbeck, M. Time-of-flight Mass Spectrometry: A New Tool for Laser Ablation Analyses. Elements Magazine 2016. In Focus | Link
  3. Gundlach-Graham, A. Toward faster and higher resolution LA–ICPMS imaging: on the co-evolution of LA cell design and ICPMS instrumentation.  Analytical and Bioanalytical Chemistry 2016.  In FocusDOI: 10.1007/s00216-015-9251-8


  1. Harlaux, M.; et al. Capabilities of sequential and quasi-simultaneous LA-ICPMS for the multi-element analysis of small quantity of liquids (pl to nl): insights from fluid inclusion analysis.  Journal of Analytical Atomic Spectrometry 2015.  In FocusDOI: 10.1039/C5JA00111K
  2. Gundlach-Graham, A.; et al. High-speed, high-resolution, multi-elemental LA-ICP-TOFMS imaging: Part I instrumentation and two-dimensional imaging of geological samples.  Analytical Chemistry 2015. In FocusDOI:10.1021/acs.analchem.5b01196
  3. Burger, M.; et al. High-speed, high-resolution, multi-elemental LA-ICP-TOFMS imaging: Part II. Critical evaluation of quantitative three-dimensional imaging of major, minor and trace elements in geological samples.  Analytical Chemistry 2015In FocusDOI: 10.1021/acs.analchem.5b01977


  1. Borovinskaya, O.; et al. Simultaneous Mass Quantification of Nanoparticles of Different Composition in a Mixture by Microdroplet Generator-ICPTOFMS.  Analytical Chemistry 2014.  In FocusDOI: 10.1021/ac501150c
  2. Borovinskaya, O.; et al. Diffusion- and velocity-driven spatial separation of analytes from single droplets entering an ICP off-axis.  J. Anal. At. Spectrom. 2014. DOI: 10.1039/c3ja50307k


  1. Neubauer, U. Wie Forscher Nanopartikel in der Umwelt nachweisen. NZZ, 2013
  2. Borovinskaya, O.; et al. A prototype of a new inductively coupled plasma timeof-flight mass spectrometer providing temporally resolved, multi-element detection of short signals generated by single particles and droplets. J. Anal. At. Spectrom 2013. DOI: 10.1039/C2JA30227F


  1. Tanner, M.; Günther, D. A new ICP–TOFMS. Measurement and readout of mass spectra with 30 µs time resolution, applied to in-torch LA–ICP–MS.  Anal Bioanal Chem 2008. DOI: 10.1007/s00216-008-1869-3

Application Notes

Conference Presentations

Customer Research

TOFWERK Publications


White Papers

Background Knowledge About icpTOF

close slider
Contact Us Pop Up

We would like to hear from you. Please send us a message by filling out the form below or email, and we will get back with you shortly.


Contact Us Product Pop Up
We will provide you with regular product updates and application data via email. You can change your mind at any time by clicking the unsubscribe link in the footer of any email you receive from us, or by contacting us at We will treat your information with respect. For more information about our privacy practices please visit our website. By clicking below, you agree that we may process your information in accordance with these terms. We use MailChimp as our marketing automation platform. By clicking yes, you acknowledge that the information you provide will be transferred to MailChimp for processing in accordance with their Privacy Policy and Terms.