一台可同时测量所有同位素的电感耦合等离子体质谱仪(ICP-MS
概述
规格
发表文献
资源
基础知识
概述
icpTOF的优越性能
icpTOF电感耦合等离子体-飞行时间质谱耦合了Thermo Scientific公司的 iCAP RQ平台(包含离子源和真空接口)和TOFWERK高性能飞行时间质谱分析仪。iCAP RQ平台提供了多类型的样品进样方式,高强度并稳固的ICP,更加简单的椎体和离子电镜维护程序和Q-cell科技。飞行时间质谱分析仪在保证跟四级管(QMS)同等灵敏度的同时,为icpTOF增加了快速全谱分析,更宽的线性动态范围和高达6000的质量分辨率。鉴于其快速全谱图采集和所有元素同位素的同步分析,icpTOF是单颗粒多元素分析和快速激光蚀刻成像的理想检测器。- All the elements. All the time. icpTOF记录全谱图以提供回溯分析,因此 您不会错过任何分析物或干扰信号。
- 高质量分辨率 icpTOF 2R高达6000的质量分辨率让排除干扰离子更加容易。
- 精确的同位素比率 icpTOF可同时测量所有同位素,从而最大程度上消除离子源和进样过程扰动对测量结果的影响。分析精度趋近于统计限制。
- 高速检测 icpTOF每隔30微秒就可记录一张全谱图,使其成为快速瞬态信号(如单个纳米颗粒,流体包裹体和单激光脉冲烧蚀)的最佳检测器。
规格
icpTOF R, icpTOF 2R, 和icpTOF S2 型号规格一览
icpTOF R, icpTOF 2R和icpTOF S2 在Thermo Scientific公司的 iCAP RQ平台(包含离子源和真空接口)上耦合了TOFWERK高性能飞行时间质谱分析仪。这三种型号性能各有千秋,适用于您的多种应用需求。icpTOF 2R搭配一款更长的飞行时间质谱模块,提供高达6000的质量分辨率,是对同标称质量的离子分离要求较高的分析案例的理想选择。S2型号的超高灵敏度可以提升生物样品成像的空间分辨率,同时也可以在分析细小颗粒物时有更好的信噪比。
Mass Resolving Power (dm/m at FWHM) |
Sensitivity (cps/ppb for 238U) |
All Element Analysis |
|
---|---|---|---|
icpTOF | 3000 | 50000 | Yes |
icpTOF 2R | 6000 | 30000 | Yes |
icpTOF S2 | 900 | 300000 | Yes |
icpTOF Hardware Design
增长的离子飞行时间带来更好的质量分辨能力
- 这两款icpTOF都配备了支持Q-cell碰撞/反应技术的iCAP RQ平台(蓝色),有效降低复杂基底可能带来的干扰
- icpTOF 2R搭配的飞行时间模块(黄色)长度是icpTOF的两倍,大大提升了仪器的质量分辨能力
发表文献
icpTOF 发表文献
2024
- Jiang, Y.; MacRenaris, K.; O’Halloran, T.; Hu, J. Determination of metal ion transport rate of human ZIP4 using stable zinc isotopes. Journal of Biological Chemistry, 2024. DOI: 10.1016/j.jbc.2024.107661
- Graziani et al. Microstructural control on trace element distribution and Au concentration in pyrite nodules. Geochemistry, 2024. In Focus | DOI: 10.1016/j.chemer.2024.126174
- Buckman, R.; Gundlach-Graham, A. Measurement Bias in spICP-TOFMS: Insights from Monte Carlo Simulations. Analytical Methods, 2024. DOI: 10.1039/D4AY00859F
- Braun et al. MeXpose─ A Modular Imaging Pipeline for the Quantitative Assessment of Cellular Metal Bioaccumulation. JACS Au, 2024. DOI: 10.1021/jacsau.4c00154
- Lu et al. A probe for NIR-II imaging and multimodal analysis of early Alzheimer’s disease by targeting CTGF. Nature Communications, 2024. In Focus | DOI: 10.1038/s41467-024-49409-4
- Xu et al. High-Resolution Characterization of Coal Combustion-Derived Metal-Containing Nanoparticles and Their Health-Related Implications. Environ. Sci. Technol. Lett., 2024. In Focus | DOI: 10.1039/D4JA00094C
- Karkee, H.; Kyte, C.; Gundlach-Graham, A. Classification of zirconium-rich engineered and natural nano particles using single particle ICP-TOFMS. J. Anal. At. Spectrom., 2024. DOI: 10.1039/D4JA00094C
- Bradley et al. Quantifying platinum binding on protein functionalized magnetic microparticles using single particle-ICP-TOF-MS. Anaytical Methods, 2024. In Focus | DOI: 10.1039/D4AY00268G
- Jiang, Y.; Hohl, S.; Huang, X.; Yang, S. Proterozoic to Phanerozoic case studies of laser ablation microanalysis for microbial carbonate U–Pb geochronology. Geoscience Frontiers, 2024. DOI: 10.1016/j.gsf.2023.101736
- Li et al. High-resolution chemical imaging to understand Cd activation in rice rhizosphere of karstic soils. Chemosphere, 2024. DOI: 10.1016/j.chemosphere.2023.140988
- Zhan et al. New insights into the key role of node I in thallium accumulation in seed of coix (Coix lacryma-jobi L.). Science of the Total Environment, 2024. DOI: 10.1016/j.scitotenv.2023.168389
- Becker et al. In Vitro Fossilization for High Spatial Resolution Quantification of Elements in Plant-Tissue Using LA-ICP-TOFMS. Analytical Chemistry, 2024. In Focus | DOI: 10.1021/acs.analchem.3c05849
- Strekopytov, S.; Entwisle, J.; Hill, S.; Goenaga-Infante, H. Inductively coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) with desolvating sample introduction and He collision gas for high-accuracy determination of Rh, Pd and Pt in automobile catalytic converters. J. Anal. At. Spectrom., 2024. DOI: 10.1039/D3JA00416C
- Szakas, S.; Gundlach-Graham, A. Exploring particle populations of common inorganic gunshot residue interferences through single particle inductively coupled plasma time-of-flight mass spectrometry. Talanta, 2024. DOI: 10.1016/j.talanta.2023.125368
- Chernonozhkin et al. Analytical capabilities of LA-ICP-TOFMS for ultra-fast 2D quantitative elemental mapping of micrometeorites. Journal of Analytical Atomic Spectrometry, 2024. In Focus | DOI: 10.1039/D3JA00335C
- Gundlach-Graham et al. Introducing “Time-of-Flight Single Particle Investigator” (TOF-SPI): A Tool for Quantitative spICP-TOFMS Data Analysis. J. Anal. At. Spectrom., 2024. DOI: 10.1039/D3EN00559C
2023
- Baalousha et al. The elemental fingerprint as a potential tool for tracking the fate of real-life model nanoplastics generated from plastic consumer products in environmental systems. Environ. Sci.: Nano, 2023. DOI: 10.1039/D3EN00559C
- Vonderach, T.; Gundlach-Graham, A.; Günther, D. Determination of carbon in microplastics and single cells by total consumption microdroplet ICP-TOFMS. Analytical and Bioanalytical Chemistry, 2023. DOI: 10.1007/s00216-023-05064-0
- Hendriks, L.; Kissling, V.M.; Buerki-Thurnherr, T.; Mitrano, D.M. Development of single-cell ICP-TOFMS to measure nanoplastics association with human cells. Environ. Sci.: Nano, 2023. DOI: 10.1039/D3EN00681F
- Szakas, S.; Gundlach-Graham, A. Exploring particle populations of common inorganic gunshot residue interferences through single particle inductively coupled plasma time-of-flight mass spectrometry. Talenta, 2023. DOI: 10.1016/j.talanta.2023.125368
- Harycki, S.; Gundlach-Graham, A. Single-Particle ICP-TOFMS with Online Microdroplet Calibration: A Versatile Approach for Accurate Quantification of Nanoparticles, Submicron Particles, and Microplastics in Seawater. Anal. Chem., 2023. DOI: 10.1021/acs.analchem.3c02785
- Karkee H.; Gundlach-Graham, A. Characterization and Quantification of Natural and Anthropogenic Titanium-Containing Particles Using Single-Particle ICP-TOFMS. Environ. Sci. Technol., 2023. DOI: 10.1021/acs.est.3c04473
- Retzmann, A.; Faßbender, S.; Rosner, M.; von der Au, M.; Vogl, J. Performance of second generation ICP-TOFMS for (multi-) isotope ratio analysis: a case study on B, Sr and Pb and their isotope fractionation behavior during the measurements. J. Anal. At. Spectrom., 2023. DOI: 10.1039/D3JA00084B
- Mackevica, A.; Hendriks, L.; Meili-Borovinskaya, O.; Baun, A.; Skjolding, L.M. Effect of Exposure Concentration and Growth Conditions on the Association of Cerium Oxide Nanoparticles with Green Algae. Nanomaterials, 2023. In Focus | DOI: 10.3390/nano13172468
- Aramendía et al. Isotope Dilution Analysis for Particle Mass Determination Using Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry: Application to Size Determination of Silver Nanoparticles. Nanomaterials, 2023. DOI: 10.3390/nano13172392
- Menero-Valdés, et al. Single Cell−ICP−ToF-MS for the Multiplexed Determination of Proteins: Evaluation of the Cellular Stress Response. Analytical Chemistry, 2023. In Focus | DOI: 10.1021/acs.analchem.3c02558
- de Bruin-Hoegée et al. A novel standard for forensic elemental profiling of polymers by LA-ICP-TOF-MS. Forensic Chemistry, 2023. DOI: 10.1016/j.forc.2023.100515
- Hendriks et al. Results of an interlaboratory comparison for characterization of Pt nanoparticles using single-particle ICP-TOFMS. Nanoscale, 2023. In Focus | DOI: 10.1039/D3NR00435J
- Peng, J.; Li, D.; Hollings, P.; Fu, Y.; Sun, X. Visualization of critical metals in marine nodules by rapid and high-resolution LA-ICP-TOFMS mapping. Ore Geology Reviews, 2023. DOI: 10.1016/j.oregeorev.2023.105342
- Leventi et al. Synthesis, characterisation and multi-modal intracellular mapping of cisplatin nano-conjugates, Chem. Commun., 2023. DOI: 10.1039/d3cc00925d
- Tian et al. Single-cell multi-element analysis reveals element distribution pattern in human sperm. Chem. Commun., 2023. DOI: 10.1039/D3CC01575K
- Tian et al. Exploring the performance of quadrupole, time-of-flight, and multi-collector ICP-MS for dual-isotope detection on single nanoparticles and cells. Analytica Chimica Acta, 2023. DOI: 10.1016/j.aca.2022.340756
- Buckman, R.; Gundlach-Graham, A. Machine learning analysis to classify nanoparticles from noisy spICP-TOFMS data, J. Anal. At. Spectrom., 2023. DOI: 10.1039/D3JA00081H
- Müller, S.; Meima, J.A.; Gäbler, H. E. Improving spatially-resolved lithium quantification in drill core samples of spodumene pegmatite by using laser-induced breakdown spectroscopy and pixel-matched reference areas, Journal of Geochemical Exploration, 2023. DOI: 10.1016/j.gexplo.2023.107235
- Garofalo et al. Fluid-rock interaction, skarn genesis, and hydrothermal alteration within an upper crustal fault zone (Island of Elba, Italy). Ore Geology Reviews, 2023. DOI: 10.1016/j.oregeorev.2023.105348
- Schaier et al. Multiparametric Tissue Characterization Utilizing the Cellular Metallome and Immuno-Mass Spectrometry Imaging. JACS Au, 2023. DOI: 10.1021/jacsau.2c00571
- Taylor, T.; Gundlach-Graham, A. Integration of capillary vibrating sharp-edge spray ionization as a nebulization device for ICP-MS, J. Anal. At. Spectrom., 2023. DOI: 10.1039/D2JA00384H
- Hendriks, L.; Mitrano, D. Direct Measurement of Microplastics by Carbon Detection via Single Particle ICP-TOFMS in Complex Aqueous Suspensions, Environ. Sci. Technol., 2023. In Focus | DOI: 10.1021/acs.est.3c01192
- Metarapi et al. Semiquantitative Analysis for High-Speed Mapping Applications of Biological Samples Using LA-ICP-TOFMS. Anal. Chem. 2023. DOI: 10.1021/acs.analchem.3c01439
- Metarapi et al. Semiquantitative Analysis for High-Speed Mapping Applications of Biological Samples Using LA-ICP-TOFMS. Anal. Chem. 2023. DOI: 10.1021/acs.analchem.3c01439
- Manard et al. Towards Automated and High-Throughput Quantitative Sizing and Isotopic Analysis of Nanoparticles via Single Particle-ICP-TOF-MS. Nanomaterials, 2023. In Focus | DOI: 10.3390/nano13081322
- Gundlach-Graham A.; Lancaster, R. Mass-Dependent Critical Value Expressions for Particle Finding in Single-Particle ICP-TOFMS. Analytical Chemistry, 2023. DOI: 10.1021/acs.analchem.2c05243
- Garofalo et al. Fluid-rock interaction, skarn genesis, and hydrothermal alteration within an upper crustal fault zone (Island of Elba, Italy), Ore Geology Reviews, 2023. DOI: 10.1016/j.oregeorev.2023.105348
- Savard et al. A New Mapping Protocol for Laser Ablation (with Fast-Funnel) Coupled to a Time-of-Flight Mass Spectrometer (LA-FF-ICP-ToF-MS) for the Rapid, Simultaneous Quantification of Multiple Minerals. Geostandards and Geoanalytical Research, 2023. DOI: 10.1111/ggr.12482
- Strekopytov, S., Billimoria K., Goenaga-Infante, H. A systematic study of high resolution multielemental quantitative bioimaging of animal tissue using LA-ICP-TOFMS. J. Anal. At. Spectrom., 2023. DOI: 10.1039/d2ja00402j
- Alam et al. Identification and quantification of Cr, Cu, and As incidental nanomaterials derived from CCA-treated wood in wildland-urban interface fire ashes. Journal of Hazardous Materials, 2023. DOI: 10.1016/j.jhazmat.2022.130608
- Nabi, M.; Wang, J.; Erfani, M.; Goharian E.; and Baalousha, M. Urban runoff drives titanium dioxide engineered particle concentrations in urban watersheds: field measurements. Environmental Science Nano, 2023. DOI: 10.1039/d2en00826b
- Babu, et al. Oral Anticancer Heterobimetallic PtIV-AuI Complexes Show High In Vivo Activity and Low Toxicity, Angewandte Chemie, 2023. DOI: 10.1002/ange.202217233
- Maeda, et al. Quantitative elemental mapping of chondritic meteorites using laser ablation-inductively coupled plasma-time of flight-mass spectrometry (LA-ICP-TOF-MS). J. Anal. At. Spectrom., 2023. DOI: 10.1039/D2JA00317A
- Harycki, S. and Gundlach-Graham, A. Characterization of a High-Sensitivity ICP-TOFMS Instrument for Microdroplet, Nanoparticle, and Microplastic Analyses. J. Anal. At. Spectrom., 2023. DOI: 10.1039/D2JA00295G
2022
- Bohleber et al. Geochemical Characterization of Insoluble Particle Clusters in Ice Cores Using Twodimensional Impurity Imaging. Geochemistry, Geophysics, Geosystems, 2022. DOI: 10.1029/2022GC010595
- Chang, et al. ICP-MS-Based Methodology In Metallomics: Towards Single Particle Analysis, Single Cell Analysis, and Spatial Metallomics. Atomic Spectroscopy, 2022. DOI: 10.46770/AS.2022.108
- Bland et al. Single-Particle Metal Fingerprint Analysis and Machine Learning Pipeline for Source Apportionment of Metal-Containing Fine Particles in Air, Environ. Sci. Technol. Lett., 2022. DOI: 10.1021/acs.estlett.2c00835
- Szakas, S.; Menking-Hoggatt, K.; Trejos, T.; Gundlach-Graham A. Elemental Characterization of Leaded and Lead-Free Inorganic Primer Gunshot Residue Standards Using Single Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Applied Spectroscopy, 2022. DOI: 10.1177/00037028221142624
- Chronakis, M.; von der Au, M.; Meermann, B. Single Cell-Asymmetrical Flow Field-Flow Fractionation/ICP-Time of Flight-Mass Spectrometry (sc-AF4/ICP-ToF-MS): An efficient alternative for the cleaning and multielemental analysis of individual cells. J.Anal.At.Spectrom, 2022. DOI:10.1039/D2JA00264G
- Olbrich et al. Beyond corrosion: development of a single cell-ICP-ToF-MS method to uncover the process of microbiologically influenced corrosion. Metallomics, 2022. DOI:10.1093/mtomcs/mfac083
- Wang et al. Laser ablation-single particle-inductively coupled plasma mass spectrometry as a sensitive tool for bioimaging of silver nanoparticles in vivo degradation. Chinese Chemical Letters, 2022. DOI: 10.1016/j.cclet.2022.03.098
- Bland, G.; Zhang, P.; Valsami-Jones, E.; and Lowry, G.V. Application of Isotopically Labeled Engineered Nanomaterials for Detection and Quantification in Soils via Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Environ. Sci. Technol., 2022. DOI: 10.1021/acs.est.2c03737
- Taskula, S.; Stetten, L.; von der Kammer, F.; Hofmann, T. Platinum Nanoparticle Extraction, Quantification, and Characterization in Sediments by Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Nanomaterials, 2022. DOI: 10.3390/nano12193307
- Tou et al. Multi-method approach for analysis of road dust particles: elemental ratios, SP-ICP-TOF-MS, and TEM. Environ. Sci.: Nano, 2022. DOI: 10.1039/D2EN00409G
- Becker, P.; Koch, J.; Günther, D. Impact of ablation cell design in LA-ICP-MS quantification. Journal of Analytical Atomic Spectrometry, 2022. DOI: 10.1039/D2JA00167E
- Nakazato, M.; Asanuma, H.; Niki, S.; Iwano, H.; Hirata , T. Depth‐Profiling Determinations of Rare Earth Element Abundances and U‐Pb Ages from Zircon Crystals Using Sensitivity‐Enhanced Inductively Coupled Plasma‐Time of Flight‐Mass Spectrometry. Geostandards and Geoanalytical Research, 2022. DOI: 10.1111/ggr.12446
- Goodman, A.; Gundlach-Graham, A.; Bevers, S.; Ranville, J. Characterization of nano-scale mineral dust aerosols in snow by single particle inductively coupled plasma mass spectrometry. Environ. Sci.: Nano, 2022. DOI: 10.1039/D2EN00277A
- Tian et al. Simultaneous multi-element and multi-isotope detection in single-particle ICP-MS analysis: Principles and applications. TrAC Trends in Analytical Chemistry, 2022. DOI: 10.1016/j.trac.2022.116746
- Schweikert et al. Quantification in bioimaging by LA-ICPMS – Evaluation of isotope dilution and standard addition enabled by micro-droplets. Analytica Chimica Acta, 2022. DOI: 10.1016/j.aca.2022.340200
- Koolen et al. High-Throughput Sizing, Counting, and Elemental Analysis of Anisotropic Multimetallic Nanoparticles with Single-Particle Inductively Coupled Plasma. ACS Nano, 2022. DOI: 10.1021/acsnano.2c01840
- Mehrabi, K.; Dengler, M.; Nilsson, I.; Baumgartner, M.; Mora, C.: Günther D.; Gundlach-Graham A. Detection of magnetic iron nanoparticles by single-particle ICP-TOFMS: case study for a magnetic filtration medical device. Anal Bioanal Chem, 2022. DOI: 10.1007/s00216-022-04234-w
- Foster et al. Accumulation of molybdenum in major organs following repeated oral administration of bis‐choline tetrathiomolybdate in the Sprague Dawley rat. Journal of Applied Toxicology, 2022. DOI:10.1002/jat.4358
- von der Au, M.; Faßbender, S.; Ioannis Chronakis, M.; Vogl, J.; Meermann, B. Size determination of nanoparticles by ICP-ToF-MS using isotope dilution in microdroplets, J. Anal. At. Spectrom., 2022. DOI:10.1039/D2JA00072E
- Harycki, S.; Gundlach-Graham, A. Online microdroplet calibration for accurate nanoparticle quantification in organic matrices. Anal Bioanal Chem, 2022. DOI:10.1007/s00216-022-04115-2
- Montaño et al. Exploring Nanogeochemical Environments: New Insights from Single Particle ICP-TOFMS and AF4-ICPMS. ACS Earth Space Chem, 2022. DOI: 10.1021/acsearthspacechem.1c00350
- Szakas, S.; Lancaster, R.; Kaegi, R.; Gundlach-Graham, A. Quantification and Classification of Engineered, Incidental, and Natural Cerium-Containing Particles by spICP-TOFMS. Environmental Science: Nano, 2022. DOI: 10.1039/D1EN01039E
- Minelli et al. Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles. Nanoscale, 2022. In Focus | DOI: 10.1039/D1NR07775A
- Bland et al. Distinguishing Engineered TiO2 Nanomaterials from Natural Ti Nanomaterials in Soil Using spICP-TOFMS and Machine Learning. Environ. Sci. Technol., 2022. In Focus | DOI: 10.1021/acs.est.1c02950
- Neff, C.; Becker, P.; Gunther, D. Parallel flow ablation cell for short signal duration in LA-ICP-TOFMS element imaging. Journal of Analytical Atomic Spectrometry, 2022. In Focus | DOI: 10.1039/D1JA00421B
- Voloaca et al. Elemental Mapping of Human Malignant Mesothelioma Tissue Samples Using High-Speed LA−ICP−TOFMS Imaging. Analytical Chemistry, 2022. In Focus | DOI: 10.1021/acs.analchem.1c04857
- Brünjes, R.; Schüürman, J.; von der Kammer, F.; Hofmann, T. Rapid Analysis of Gunshot Residues with Single Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Forensic Science International, 2022. In Focus | DOI: 10.1016/j.forsciint.2022.111202
- Wang. J.; Nabi, M.; Erfani, M.; Goharian, E.; Baalousha, M. Identification and Quantification of Anthropogenic Nanomaterials in Urban Rain and Runoff Using Single Particle-Inductively Coupled Plasma-Time of Flight-Mass Spectrometry. Environmental Science Nano, 2022. DOI: 10.1039/D1EN00850A
2021
- Schoeberl et al. Cisplatin Uptake in Macrophage Subtypes at the Single-Cell Level by LA-ICP-TOFMS Imaging. Analytical Chemistry, 2021. DOI:10.1021/acs.analchem.1c03442
- Qin, W.; Stärk, H.J.; Reemtsma, T. Ruthenium red: a highly efficient and versatile cell staining agent for single-cell analysis using inductively coupled plasma time-of-flight mass spectrometry. Analyst, communication, 2021. DOI:10.1039/D1AN01143J
- Holbrook, T.; Gallot-Duval, D.; Reemtsma, T.; Wagner, S. Machine learning: our future spotlight into single-particle ICP-ToF-MS analysis. Journal of Analytical Atomic Spectrometry, 2021. In Focus | DOI:10.1039/D1JA00213A
- Nabi M,; Wang J.; Goharian E.; Baalousha, M. Temporal variation in TiO2 engineered particle concentrations in the Broad River during dry and wet weathers. Science of the Total Environment, 2021. DOI:10.1016/j.scitotenv.2021.151081
- Holbrook, T.; Gallot-Duval, D.; Reemtsma, T.; Wagner, S. An investigation into LA-spICP-ToF-MS uses for in situ measurement of environmental multi-elemental nanoparticles. Journal of Analytical Atomic Spectrometry, 2021. In Focus | DOI: 10.1039/D1JA00112D
- Xu et al. Impacts of Sediment Particle Grain Size and Mercury Speciation on Mercury Bioavailability Potential. Environ. Sci. Technol. 2021. DOI:10.1021/acs.est.1c03572
- Förster, M.; Bussweiler, Y.; Prelevic, D.; Daczko, N.; Buhre, S.; Mertz-Kraus, R.; Foley D. Sediment-Peridotite Reaction Controls Fore-Arc Metasomatism and Arc Magma Geochemical Signatures, Geosciences, 2021. In Focus | DOI: 10.3390/geosciences11090372
- Schueffl et al. Albumin-targeting of an oxaliplatin-releasing platinum(IV) prodrug results in pronounced anticancer activity due to endocytotic drug uptake in vivo. Chemical Science, 2021. DOI: 10.1039/d1sc03311e
- Mehrabi, K.; Kaegi, R.; Günther, D.; Gundlach-Graham, A. Quantification and Clustering of Inorganic Nanoplastics in Wastewater Treatment Plants acros Switzerland. Chimia, 2021. In Focus | DOI:10.2533/chimia.2021.642
- Faßbender et al. Species-specific isotope dilution analysis of monomethylmercury in sediment using GC/ICP-ToF-MS and comparison with ICP-Q-MS and ICP-SF-MS. Analytical and Bioanalytical Chemistry, 2021. In Focus | DOI: 10.1007/s00216-021-03497-z
- Norrfors, K.K.; Micić, V.; Borovinskaya, O.; von der Kammer, F.; Hofmann, T.; Cornelis, G. A critical evaluation of short columns forestimating the attachment efficiency ofengineered nanomaterials in natural soils. Environmental Science: Nano, 2021. In Focus | DOI: 10.1039/d0en01089h
- Baalousha, M.; Wang, J.; Erfani, M.; Goharian, E. Elemental fingerprints in natural nanomaterials determined using SP-ICP-TOF-MS and clustering analysis. Science of The Total Environment, 2021. In Focus| DOI: 10.1016/j.scitotenv.2021.148426
- Schweikert et al. Micro-droplet-based calibration for quantitative elemental bioimaging by LA-ICPMS. Analytical and Bioanalytical Chemistry, 2021. In Focus | DOI:10.1007/s00216-021-03357-w
- Krzemnicki, M.; Wang, H.; Büche, S. A New Type of Emerald from Afghanistan’s Panjshir Valley. The Journal of Gemmology, 2021. DOI:10.15506/JoG.2021.37.5.474
- Mehrabi, K.; Kaegi, R.; Günther, D.; Gundlach-Graham, A. Emerging investigator series: Automated Single-Nanoparticle Quantification and Classification: A Holistic Study of Particles into and out of Wastewater Treatment Plants in Switzerland. Environ. Sci.: Nano, 2021. In Focus | DOI:10.1039/D0EN01066A
- Gundlach-Graham, A. Multiplexed and multi-metal single-particle characterization with ICP-TOFMS. Chapter in Comprehensive Analytical Chemistry, 2021. In Focus | DOI: 10.1016/bs.coac.2021.01.008
- Meili-Borovinskaya et al. Analysis of Complex Particle Mixtures by Asymmetrical Flow Field-Flow Fractionation Coupled to Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Journal of Chromatography, 2021. In Focus | DOI: 10.1016/j.chroma.2021.461981
- Theiner, S.; Schoeberl, A.; Schweikert, A.; Keppler, B.; Koellensperger, G. Mass spectrometry techniques for imaging and detection of metallodrugs. Current Opinion in Chemical Biology, 2021. In Focus | DOI:10.1016/j.cbpa.2020.12.005
- Wang, H.; Krzemnicki, M. Multi-element analysis of minerals using laser ablation inductively couple plasma time-of-flight mass spectrometry and geochemical data visualization using t-distributed stochastic neighbor embedding: Case study on emeralds from various deposits. Journal of Analytical Atomic Spectrometry, 2021. In Focus | DOI: 10.1039/D0JA00484G
- Jahn, L.; Bland, G.; Monroe, L.; Sullivan, R.; Meyer, M. Single-Particle Elemental Analysis of Vacuum Bag Dust Samples Collected From the International Space Station by SEM/EDX and sp-ICP-ToF-MS. Aerosol Science and Technology, 2021. In Focus | DOI: 10.1080/02786826.2021.1874610
- Chapman et al. Chemical and physical heterogeneity within native gold: Implications for the design of gold particles studies. Mineralium Deposita, 2021. In Focus | DOI: 10.1007/s00126-020-01036-x
- Wernitznig et al. Plecstatin-1 induces an immunogenic cell death signature in colorectal tumour spheroids. Metallomics, 2021. In Focus | DOI: 10.1039/D0MT00227E
- Chew, D.; Drost, K.; Marsh, J.; Petrus, J. LA-ICP-MS imaging in the geosciences and its applications to geochronology. Chemical Geology, 2021. In Focus | DOI: 10.1016/j.chemgeo.2020.119917
- Nabi, M.; Wang, J.; Baalousha, M. Episodic surges in titanium dioxide engineered particle concentrations in surface waters following rainfall events. Chemosphere, 2021. In Focus | DOI: 10.1016/j.chemosphere.2020.128261
2020
- Jahn, L. et al. Metallic and Crustal Elements in Biomass-Burning Aerosol and Ash: Prevalence, Significance, and Similarity to Soil Particles. ACS Earth Space Chem, 2020. DOI: 10.1021/acsearthspacechem.0c00191
- Laughton, S. et al. Methanol-based extraction protocol for insoluble and moderately water-soluble nanoparticles in plants to enable characterization by single particle ICP-MS. Analytical and Bioanalytical Chemistry, 2020. In Focus | DOI:10.1007/s00216-020-03014-8
- Hendriks, L.; Skjolding, L. Single-Cell Analysis by Inductively Coupled Plasma–Time-of-Flight Mass Spectrometry to Quantify Algal Cell Interaction with Nanoparticles by Their Elemental Fingerprint. Spectroscopy, 2020. In Focus
- Theiner, S. et al. Single-Cell Analysis by Use of ICP-MS. Journal of Analytical Atomic Spectrometry 2020. In Focus | DOI: 10.1039/D0JA00194E
- Gundlach-Graham, A. & Mehrabi, K. Monodisperse Microdroplets: A Tool that Advances Single-Particle ICP-MS Measurements. Journal of Analytical Atomic Spectrometry 2020. In Focus | DOI: 10.1039/D0JA00213E
- Thompson, J.; Danyushevsky, L.; Borovinskaya, O.; Tanner, M. Time-of-flight ICP-MS laser ablation zircon geochronology: assessment and comparison against quadrupole ICP-MS. Journal of Analytical Atomic Spectrometry 2020. In Focus | DOI: 10.1039/d0ja00252f
- Neff, C. et al. Capabilities of automated LA-ICP-TOFMS imaging of geological samples. Journal of Analytical Atomic Spectrometry 2020. In Focus | DOI: 10.1039/D0JA00238K
- Becker, P. et al. Forensic Float Glass Fragment Analysis Using Single-Pulse Laser Ablation Inductively Coupled Plasma Time of Flight Mass Spectrometry. Journal of Analytical Atomic Spectrometry 2020. In Focus | DOI: 10.1039/D0JA00284D
- Bevers, S. et al. Quantification and Characterization of Nanoparticulate Zinc in an Urban Watershed. Frontiers in Environmental Science: Biogeochemical Dynamics 2020. DOI: 10.3389/fenvs.2020.00084
- Rubatto, D. et al. Identification of growth mechanisms in metamorphic garnet by high-resolution trace element mapping with LA-ICP-TOFMS. Contrib Mineral Petrol 2020. DOI: 10.1007/s00410-020-01700-5
- Theiner S. et al. Laser ablation-ICP-TOFMS imaging of germ cell tumors of patients undergoing platinum-based chemotherapy. Metallomics 2020. In Focus | DOI: 10.1039/D0MT00080A
- von der Au, M. et al. Single cell-inductively coupled plasma-time of flight-mass spectrometry approach for ecotoxicological testing. Algal Research 2020. In Focus | DOI:10.1016/j.algal.2020.101964
- Bussweiler, Y. et al. Trace element mapping of high-pressure, high-temperature experimental samples with laser ablation ICP time-of-flight mass spectrometry–Illuminating melt-rock reactions in the lithospheric mantle. Lithos, 2020. In Focus | DOI: 10.1016/j.lithos.2019.105282
- Van Malderen, S., Van Acker, T., Vanhaecke, F. Sub-µm nanosecond LA-ICP-MS imaging at pixel acquisition rates above 250 Hz via a low-dispersion setup. Analytical Chemistry 2020. In Focus | DOI:10.1021/acs.analchem.9b05056
- Phyo, M.M. et al. U–Pb Dating of Zircon and Zirconolite Inclusions in Marble-Hosted Gem-Quality Ruby and Spinel from Mogok, Myanmar. Minerals 2020. In Focus | DOI: 10.3390/min10020195
2019
- Erhardt, T.; Jensen, C.; Borovinskaya, O.; Fischer, H. Single particle characterization and total elemental concentration measurements in polar ice using CFA-icpTOF. Environmental Science & Technology 2019. In Focus | DOI: 10.1021/acs.est.9b03886
- Mehrabi, K.; Günther, D.; Gundlach-Graham, A. Single-Particle ICP-TOFMS with Online Microdroplet Calibration for the Simultaneous Quantification of Diverse Nanoparticles in Complex Matrices. Environmental Science: Nano 2019. DOI: 10.1039/C9EN00620F
- Ubide, T.; Caulfield, J.; Brandt, C.; Bussweiler, Y.; Mollo, S.; Di Stefano, F.; Nazzari, M.; Scarlato, P. Deep Magma Storage revealed by Multi-Method Elemental Mapping of Clinopyroxene Megacrysts at Stromboli Volcano. Frontiers in Earth Science 2019. In Focus | DOI:10.3389/feart.2019.00239
- Theiner, S.; Schoeberl, A.; Fischer, L.; Neumayer, S.; Hann, S.; Koellensperger, G. FI-ICP-TOFMS for quantification of biologically essential trace elements in cerebrospinal fluid-high-throughput at low sample volume. Analyst 2019. DOI:10.1039/C9AN00039A
- Löhr, K.; Borovinskaya, O., Tourniaire, G.; Panne, U.; Jakubowski, N. Arraying of single cells for quantitative highthroughput Laser Ablation ICP-TOF-MS. Analytical Chemistry 2019. DOI:10.1021/acs.analchem.9b00198
- Hendriks, L.; Gundlach-Graham, A.; Günther, D. Performance of sp-ICP-TOFMS with signal distributions fitted to a compound Poisson model. Journal of Analytical Atomic Spectrometry 2019. DOI:10.1039/C9JA00186G
- Arakawa, A.; Jakubowski, N.; Koellensperger, G.; Theiner, S.; Schweikert, A.; Flemig, S.; Iwahata, D.; Traub, H.; Hirata, T. Quantitative imaging of silver nanoparticles and essential elements in thin sections of fibroblast multicellular spheroids by high resolution laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS). Analytical Chemistry 2019. DOI:10.1021/acs.analchem.9b02239
- Krebs, M.; Pearson, D.; Fagan, A.; Bussweiler, Y.; Sarkar, C. The application of trace elements and Sr–Pb isotopes to dating and tracing ruby formation: The Aappaluttoq deposit, SW Greenland. Chemical Geology 2019. DOI:10.1016/j.chemgeo.2019.05.035
- Theiner, S.; Schweikert, A.; Van Malderen, S.; Schoeberl, A.; Neumayer, S.; Jilma, P.; Peyrl, A.; Koellensperger, G. Laser ablation-inductively coupled plasma time-of-flight mass spectrometry imaging of trace elements at single cell level for clinical practice. Analytical Chemistry 2019. DOI:10.1021/acs.analchem.9b00698
- Theiner, S.; Schoeberl, A.; Neumayer, S.; Koellensperger, G. FI-ICP-TOFMS for high-throughput and low volume multi-element analysis in environmental and biological matrices. Journal of Analytical Atomic Spectrometry 2019. DOI:10.1039/C9JA00022D
- Loosli, F.; Wang, J.; Rothenberg, S.; Bizimis, M.; Winkler, C.; Borovinskaya, O.; Flamigni, L.; Baalousha, M. Sewage spills are a major source of titanium dioxide engineered (nano)-particles into the environment. Environ. Sci.: Nano 2019. In Focus | DOI: 10.1039/c8en01376d
- Bauer, O.; Hachmöller, O.; Borovinskaya, O.; Sperling, M.; Schurek, H.; Ciarimboli, G.; Karst, U. LA-ICP-ToFMS for rapid, all-elemental and quantitative bioimaging, isotopic analysis and the investigation of plasma processes”, Journal of Analytical Atomic Spectrometry 2019. In Focus | DOI: 10.1039/C8JA00288F
- Hendriks, L.; Ramkorun-Schmidt, B.; Gundlach-Graham, A.; Koch, J.; Grass, R. N.; Jakubowski, N.; Gunther, D. Single-Particle ICP-MS with Online Microdroplet Calibration: Toward Matrix Independent Nanoparticle Sizing. Journal of Analytical Atomic Spectrometry 2019. In Focus | DOI: 10.1039/C8JA00397A
- Burgay, F.; Erhardt, T.; Lunga, D. D.; Jensen, C. M.; Spolaor, A.; Vallelonga, P.; Fischer, H.; Barbante, C.; Fe2+ in ice cores as a new potential proxy to detect past volcanic eruptions. Science of The Total Environment 2019. In Focus | DOI: 10.1016/j.scitotenv.2018.11.075
- Burger, M.; Hendriks, L.; Kaeslin, J.; Gundlach-Graham, A.; Hattendorf, B.; Günther, D. Characterization of inductively coupled plasma time-of-flight mass spectrometry in combination with collision/reaction cell technology–insights from highly time-resolved measurements. Journal of Analytical Atomic Spectrometry 2019. In Focus | DOI: 10.1039/C8JA00275D
2018
- Hegetschweiler, A.; Borovinskaya, O.; Staudt, T.; Kraus, T. Single particle mass spectrometry of titanium and niobium carbonitride precipitates in steels. Analytical Chemistry 2018. In Focus | DOI:10.1021/acs.analchem.8b04012
- Gundlach-Graham, A.; Hendriks, L.; Mehrabi, K.; Günther, D. Monte Carlo Simulation of Low-Count Signals in Time-of-Flight Mass Spectrometry and its Application to Single-Particle Detection. Analytical Chemistry 2018. DOI: 10.1021/acs.analchem.8b01551
- Ronzani, A.; Pointurier, F.; Rittner, M.; Borovinskaya, O.; Tanner, M.; Hubert, A.; Humbert, A.C.; Aupiais, J.; Dacheux, N. Capabilities of Laser Ablation – ICP-TOF-MS Coupling for Isotopic Analysis of Individual Uranium Micrometric Particles. Journal of Analytical Atomic Spectrometry 2018. In Focus | DOI: 10.1039/C8JA00241J
- Käser, D.; Hendriks, L.; Koch, J.; Günther, D. Depth Profile Analyses with Sub 100-nm Depth Resolution of a Metal Thin Film by Femtosecond – Laser Ablation – Inductively Coupled Plasma – Time-of-Flight Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2018. In Focus | DOI:10.1016/j.sab.2018.08.002
- Gundlach-Graham, A.; Garofalo, P.S.; Schwarz, G.; Redi, D.; Günther, D. High‐Resolution, Quantitative Element Imaging of an Upper Crust, Low‐Angle Cataclasite (Zuccale Fault, Northern Apennines) by Laser Ablation ICP Time‐of‐Flight Mass Spectrometry. Geostandards and Geoanalytical Research 2018. In Focus | DOI: 10.1111/ggr.12233
- Ohata, M.; Hagino, H. Examination on simultaneous multi-element isotope ratio measurement by inductively coupled plasma time of flight mass spectrometry. International Journal of Mass Spectrometry 2018. In Focus | DOI:10.1016/j.ijms.2018.03.003
- Gundlach-Graham, A. An Elemental Regeneration. The Analytical Scientist 2018. URL Link
- Naasz, S.; et al. Multi-element analysis of single nanoparticles by ICP-MS using quadrupole and time-of-flight technologies. Journal of Analytical Atomic Spectrometry 2018. In Focus | DOI:10.1039/C7JA00399D
- Gondikas, A.; et al. Where is the nano? Analytical approaches for the detection and quantification of TiO 2 engineered nanoparticles in surface waters. Environmental Science: Nano 2018. In Focus | DOI:10.1039/c7en00952f
- Hendriks, L.; Gundlach-Graham, A.; Günther, D. Analysis of Inorganic Nanoparticles by Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. CHIMIA International Journal for Chemistry 2018. In Focus | DOI: 10.2533/chimia.2018.221
2017
- Hagino, H.; Tonegawa, Y.; Tanner, M.; Borovinskaya, O.; Hikita, T.; Shimono, A.; Application of ICP-TOFMS for Real-Time Measurement of Trace Elements in Automotive Exhaust Particulate Matters from Engine Oil Additives. Transactions of Society of Automotive Engineers of Japan 2017. In Focus | DOI: 10.11351/jsaeronbun.48.1341
- Hendriks, L.; et al. Characterization of a new ICP-TOFMS instrument with continuous and discrete introduction of solutions, Journal of Analytical Atomic Spectrometry 2017. In Focus | DOI: 10.1039/C6JA00400H
- Burger, M.; et al. Capabilities of laser ablation inductively coupled plasma time-of-flight mass spectrometry. Journal of Analytical Atomic Spectrometry 2017. DOI: 10.1039/C7JA00236J
- Van Malderen, S.; et al. Three-Dimensional reconstruction of the Tissue-Specific Multielemental Distribution within Ceriodaphnia dubia via Multimodal Registration Using Laser Ablation ICP-Mass Spectrometry and X-ray Spectroscopic Techniques. Analytical Chemistry 2017. DOI: 10.1021/acs.analchem.7b00111
- Praetorius, A.; et al. Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environmental Science: Nano 2017. In Focus |DOI: 10.1039/C6EN00455E
- Bussweiler, Y.; Borovinskaya, O.; Tanner, M. Laser Ablation and inductively coupled plasma-time-of-flight mass spectrometry-A powerful combination for high-speed multielemental imaging on the micrometer scale. Spectroscopy 2017. In Focus | Link
2016
- Wang, H.; et al. Simultaneous High Sensitivity Trace-Element and Isotopic Analysis of Gemstones Using Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. The Journal of Gemmology 2016.
- Wiedenbeck, M. Time-of-flight Mass Spectrometry: A New Tool for Laser Ablation Analyses. Elements Magazine 2016. In Focus | Link
- Gundlach-Graham, A. Toward faster and higher resolution LA–ICPMS imaging: on the co-evolution of LA cell design and ICPMS instrumentation. Analytical and Bioanalytical Chemistry 2016. In Focus | DOI: 10.1007/s00216-015-9251-8
2015
- Harlaux, M.; et al. Capabilities of sequential and quasi-simultaneous LA-ICPMS for the multi-element analysis of small quantity of liquids (pl to nl): insights from fluid inclusion analysis. Journal of Analytical Atomic Spectrometry 2015. In Focus | DOI: 10.1039/C5JA00111K
- Gundlach-Graham, A.; et al. High-speed, high-resolution, multi-elemental LA-ICP-TOFMS imaging: Part I instrumentation and two-dimensional imaging of geological samples. Analytical Chemistry 2015. In Focus | DOI:10.1021/acs.analchem.5b01196
- Burger, M.; et al. High-speed, high-resolution, multi-elemental LA-ICP-TOFMS imaging: Part II. Critical evaluation of quantitative three-dimensional imaging of major, minor and trace elements in geological samples. Analytical Chemistry 2015. In Focus | DOI: 10.1021/acs.analchem.5b01977
2014
- Borovinskaya, O.; et al. Simultaneous Mass Quantification of Nanoparticles of Different Composition in a Mixture by Microdroplet Generator-ICPTOFMS. Analytical Chemistry 2014. In Focus | DOI: 10.1021/ac501150c
- Borovinskaya, O.; et al. Diffusion- and velocity-driven spatial separation of analytes from single droplets entering an ICP off-axis. J. Anal. At. Spectrom. 2014. DOI: 10.1039/c3ja50307k
2013
- Neubauer, U. Wie Forscher Nanopartikel in der Umwelt nachweisen. NZZ, 2013
- Borovinskaya, O.; et al. A prototype of a new inductively coupled plasma timeof-flight mass spectrometer providing temporally resolved, multi-element detection of short signals generated by single particles and droplets. J. Anal. At. Spectrom 2013. DOI: 10.1039/C2JA30227F
2008
- Tanner, M.; Günther, D. A new ICP–TOFMS. Measurement and readout of mass spectra with 30 µs time resolution, applied to in-torch LA–ICP–MS. Anal Bioanal Chem 2008. DOI: 10.1007/s00216-008-1869-3
资源
- 机动车尾气中颗粒物伴生痕量元素组分实时在线分析
- 为什么TOF飞行时间质谱是单颗粒icp质谱仪的最佳搭配,没有唯一?
- Detection and Quantification of Titanium Dioxide Engineered Nanoparticles in Surface Waters
- Perspective Article on Multielemental Imaging with Laser Ablation ICP–TOFMS in May Issue of Spectroscopy
- Quantification of Metallic Nanoparticles with ICP-TOFMS
- Combining Laser Ablation with Single Particle ICP-TOFMS for the Study of Multi-Element Particles in Environmental Systems
- Online Microdroplet Calibration with the icpTOF Enables High-Throughput Nanoparticle Studies
- fs-LA-icpTOF 飞秒激光剥蚀ICP质谱仪助 力高分辨率深度剖面分析
- icpTOF质谱元素成像分析洞察岩石样品内Fault Formation机理
- icpTOF全谱检测多种元素及其同位素分布及比例
- Analysis of Inorganic Nanoparticles in Complex Matrices
- Characterizing the Performance of the icpTOF for Continuous Solutions and Single Microdroplets
- Single-Particle Multi-Element Fingerprinting of Engineered Nanoparticles in Soils with icpTOF
- Toward Faster and Higher Resolution LA–ICPMS Imaging
- The Advantages of TOF for ICP-MS Analysis of Fluid Inclusions
- High-Speed, Multi-Elemental Imaging for Geological Samples with LA-ICP-TOFMS
- Imaging the Distribution of Elements in Antarctic Ice Cores with LA-ICP-TOFMS PDF
- Single Cell ICP-MS Analysis with the icpTOF Provides New Insights into Cell Ionomics PDF
- icpTOF质谱单颗粒多元素分析案例:活体内汞硒共生纳米颗粒物生成机理研究 PDF
- High Speed, High Resolution, Multi-Element Imaging of Plant Root Cross Sections to Highlight Nutrient Transport Pathways: App Note PDF
- Quantifying the Multi-Element Composition of Single Steel Nanoparticles with the icpTOF: Application Note PDF
- High-Speed Elemental Imaging of Cisplatin-Perfused Tissue with Laser Ablation-icpTOF: Application Note PDF
- Fast Multi-Element LA-icpTOF Mapping of Gold Grains: Application Note PDF
- Fast, High-Resolution Imaging of Sphalerite with the icpTOF: Application Note PDF
- Multi-Element Detection of Single Nanoparticles with icpTOF: Application Note PDF
- Laser Ablation with the icpTOF: Application Note PDF
- The icpTOF as a Versatile Tool for Elemental Analysis of Single Particles and for Fast Laser Ablation Imaging: Poster APWC 2017 PDF
- High-Resolution, All-Element Imaging of a Garnet Grain with the icpTOF
- 3D Tissue Compositional Profiling with the icpTOF: Analytical Chemistry Publication and EWCPS 2017 Poster PDF
- LA icpTOF – A Reliable Tool for Rapid Elemental Imaging of Carbonates: Poster EWCPS 2017 PDF
- SP-ICP-MS Analysis of Complex Nanoparticles in Liquids and Air: Poster ICCEEN 2016 PDF
- High-Speed, Multi-Element Imaging using Fast Laser Ablation Sampling Systems with the icpTOF: Poster EWLA 2016 PDF
- Characterizing Fe-Rich Nanoparticles: Poster ASMS 2016 PDF
- Analysis of Nanoparticles with the icpTOF: Poster WCPS 2016 PDF
- 网络讲堂: Maximum Sensitivity for Particles, Cells, and Bioimaging with the icpTOF S2 PDF
- icpTOF Webinar Series: Multi-Element Laser Ablation Imaging and Spot Analysis 观看视频 PDF
- icpTOF Webinar Series: Multi-Element, Single-Particle Analysis 观看视频 PDF
- Webinar: Fundamentals and Applications of the icpTOF 观看视频 PDF
基础知识