在使用电感耦合等离子质谱法(ICP-MS)进行分析之前,对含有颗粒状残留物的液体样品进行适当的酸消解仍是标准前处理步骤。采用此类或类似样品前处理后,所记录的ICP-MS数据也跟整体粒子数量以及种类连在一起,对需要分析要求更加精细的应用不完全满足需求。2003年,Degueldre首次证明了ICP-MS质谱法可以定量检测单个颗粒物,并引入了单颗粒物(single particle sp)ICP-MS质谱分析的概念[1]。spICP-MS质谱分析法可以测量单个颗粒内含所有元素的质量以及总颗粒物数浓度,并且提供比其他分析技术好得多的检测极限(<微克/千克)。如果有颗粒物的密度和形状信息,还可以根据spICP-MS记录的质量估算单个粒子的直径大小。单颗粒物产生的ICP-MS信号的持续时间非常短(几分之一毫秒)。如果使用扫描型质量分析仪(如四极杆或扇形场等),在毫秒尺度的瞬态信号时长内无法持续记录所有元素信息,通常只能提前选择颗粒物内的一个或两个元素进行数据采集,可能错失其他或关键信息,同时也需要耗时耗力多次重复实验来得到完整的原始数据库。而飞行时间(TOF)质量分析仪可以瞬时测量所有元素(及其同位素),从而能够测量粒子的完整多元素组分信息。如今,spICP-MS质谱分析法最常用于表征无机纳米粒子以及研究其与环境样品[2]和生物系统[3]的暴露影响。spICP-MS质谱并非仅仅限于上述这些领域。另一个引起业内关注的应用是使用spICP-MS质谱仪在线分析大气环境气溶胶中的单个微米/纳米颗粒物[4]。
单颗粒物ICP-MS质谱仪是如何工作的?
单颗粒物ICP-MS质谱分析具有以下两个主要要求:
· 样品中的颗粒物数浓度非常低,以降低将多个颗粒物同时引入ICP-MS质谱仪的可能性
· 质谱质量分析仪以不到2毫秒的驻留/积累时间不间断运行,以观察持续的单颗粒物事件
在实践中,我们可以将任何液体样品导入ICP质谱系统,当中一些液体样品在颗粒物传输和电离方面比其他相对更加高效。取决于采用ICP质谱仪的硬件配置,颗粒物悬浮液通常被稀释到10万-100万个颗粒物/毫升的浓度。当液体样品中的颗粒物数量足够少时,单位时间将只有一个颗粒物进入ICP系统。进入等离子系统,颗粒物将被气化、雾化和电离,形成元素离子。所生成的离子将通过多级差分压强接口从前端ICP系统导向下游质量分析仪,该减压接口用于调节ICP大气压进样口与低压(如10-6毫巴)质量分析仪之间的压力差。逐步减压过程中,系统内置离子光学元件将离子最大效率地传输到质量分析仪。质量分析仪利用电场和/或磁场在离子撞击检测器之前根据其质荷比(m/Q)对元素离子(同位素,或氧化物等)进行有效分离。所生成的质谱图显示在每个质荷比下记录的离子数量。质荷比可用于定性元素(或干扰物)类别,而信号强度则用来定量元素浓度。经ICP源后单颗粒物离子事件产生非常快速的瞬态信号(信号尖状突起),总持续时间一般只有几分之一毫秒。因此,质量分析仪的响应速度需要适配或者更快,从而完整的记录多种离子信号。如前所述,扫描型质量分析仪通常仅针对一种或两种元素,而TOF质量分析仪则能够瞬时记录单颗粒对应的整张质谱(所有质荷比),同时也包含了元素同位素和可能的氧化杂质信息。对于所记录的任何元素(基于质荷比),在瞬态单颗粒物事件持续时间内观察到的总离子信号与单颗粒物中该元素的质量成正比。ICP-MS质谱仪检测到的单颗粒物事件(瞬态信号尖峰)频率则与引入液体样品中的颗粒物数浓度成正比。值得注意的是,不包含信号尖峰的连续平滑信号区域(类似于信号时序图中的背景信号)则代表溶解在液体样品中的相应浓度信息。
为确保所记录的质谱数据包含,且只包含来自单个颗粒物的信号,质量分析仪必须以较块的数据采集效率运行[5]。随着数据采集所需时间的增加,包含两个或多个连续颗粒物信号的事件数量将会相应增加,这会导致后续结果的分析和解读产生偏差。此外,通过在高瞬时分辨率下采集数据,还可以提高信噪比(SNR):与粒子共同单位时间内噪声(对应无颗粒物事件)越少,谱图信噪比将越高,空间检测限则越好。使用spICP-MS质谱仪可实现的空间检测限与特定的元素和其同位素相关,通常在10纳米至数百纳米范围内。
无论是将所记录的信号强度转换为元素质量,还是将颗粒物事件频率转换为粒子数浓度,均需要对仪器进行适当的校准。通常,基于参考颗粒物进行校准是最直接的方式,但由于缺乏这些标准颗粒物,这种方式并不直接适用。因此,Pace等 [6]提出了一种替代校准程序,即使用元素标准溶液,同时利用标准程序确定颗粒物传输效率和检测效率。许多分析实验室都在使用这种方法,但其他不同的校准概念在相关文献中也有报道 [7]。
超纯水是与ICP-MS质谱仪最兼容的单颗粒物分析溶剂,提供最佳的检测极,但其并不适用于所有系统。此外,在适当样品稀释或颗粒物提取成后,也可以在更复杂的样品基质中进行单颗粒物分析[8],[9]。
单颗粒物多元素ICP-MS质谱仪
使用由四极杆或扇形场质量分析仪为主的ICP-MS系统进行单颗粒物分析仅限于信息相对简单的样品(比如单元素金属或个别氧化物粒子),因为这类质量分析仪只能在瞬时单颗粒物事件持续时长内记录一种或两种元素信号。相比之下,飞行时间质量分析仪(比如TOFWERK icpTOF系统)则可以记录每个单颗粒物内所有元素及其同位素信号。因此,除了报告元素质量和数量浓度外,基于飞行时间(TOF)的质谱仪还可以精准表征粒子的多元素组分,排除可能的杂质干扰。这种独特的功能对于快速增长的复合纳米粒子分析应用潜力巨大。此外,初始的简单粒子在暴露于复杂环境后经常会发生组分变化,这也使它们的特性和相互作用途径发生变化。单颗粒物多元素ICP-MS系统可以提供有效的方法用于研究这些过程。
随着纳米颗粒物在日常产品应用范围和生产规模的持续增加,人们越来越担心其对环境和生命系统(包括人类)可能造成的潜在负面影响。与类似的天然源颗粒物相比,释放到环境中的工程纳米材料的浓度仍然非常低。有效检测出这些人造颗粒物对预测其未来对环境和生命系统的影响至关重要。可以想象,要在复杂的环境背景中准确识别出低浓度颗粒物非常具有挑战性。最近,相关研究人员提出使用多元素spICP-MS质谱分析法对单颗粒物进行指纹识别,提供了解决该问题的一种可能解决方法。举例来说,业界已成功运用该方法在含有天然铈粒子的复杂背景下追踪土壤中的二氧化铈(CeO2)工程纳米颗粒物[2]。
延伸阅读
1. Degueldre, C. and P.Y. Favarger, Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids Surf., A, 2003. 217(1-3): p. 137-142.
2. Praetorius, A., et al., Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environ. Sci.: Nano, 2017. 4(2): p. 307-314.
3. Scanlan, L.D., et al., Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia magna. ACS Nano, 2013. 7(12): p. 10681-10694.
4. Suzuki, Y., et al., Real-time monitoring and determination of Pb in a single airborne nanoparticle. Journal of Analytical Atomic Spectrometry, 2010. 25(7): p. 947-949.
5. Hineman, A. and C. Stephan, Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. Journal of Analytical Atomic Spectrometry, 2014. 29(7): p. 1252-1257.
6. Pace, H.E., et al., Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2011. 83(24): p. 9361-9369.
7. Gschwind, S., et al., Capabilities of inductively coupled plasma mass spectrometry for the detection of nanoparticles carried by monodisperse microdroplets. Journal of Analytical Atomic Spectrometry, 2011. 26(6): p. 1166-1174.
8. Peters, R.B., et al., Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Analytical and Bioanalytical Chemistry, 2014. 406(16): p. 3875-3885.
9. Mitrano, D.M., et al., Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environmental Toxicology and Chemistry, 2012. 31(1): p. 115-121.